Answer:
Step-by-step explanation:

Using <span>De Moivre's formula
</span>
if z = a ( cos x + i sin x ) ⇒⇒⇒ ∴ z^n = a^n ( cos nx + i sin nx)
Part (1)
∴ [ 3 (cos 27° + i sin 27°) ]⁵ = (3⁵) ( cos 5*27° + i sin 5*27°)
= 243 ( cos 135° + i sin 135°) ⇒⇒⇒⇒ Polar form
=================================
Part (2)
The angle 135° in the second quadrant ⇒ sin is (+) and cos is (-)
and its reference angle = 180° - 135° = 45°
sin 45° = cos 45°= 1/√2 = (√2)/2
∴ sin 135° = (√2)/2 and cos 135° = -(√2)/2
∴ 243 ( cos 135° + i sin 135°) = 243 [ -(√2)/2 + i (√2)/2 ]
= - 243(√2)/2 + 243 (√2)/2 i ⇒⇒⇒⇒ standard form
===========================================
The correct answers are options (1) and (3)
option (1) ⇒⇒⇒ 243 ( cos 135° + i sin 135°) ⇒⇒⇒⇒ Polar form
option (3) ⇒⇒⇒ - 243(√2)/2 + 243 (√2)/2 i ⇒⇒⇒⇒ standard form
Answer:
volume of xy-plane outside the cone = 16π/3
Step-by-step explanation:
using cylindrical coordinates
z² = x² +y² =====>z²=r²=====>z=r
x² + y² =4 ====>r = 2
So, the volume ∫∫∫dV equal
∫(θ = 0 to 2π) ∫(r = 0 to 2) ∫z=0 to r) 1 x (r dz dr dθ) via cylindrical coordinates
= ∫(θ = 0 to 2π) ∫(r = 0 to 2) r² dr dθ
= ∫(θ = 0 to 2π) (1/3)r³ {for r = 0 to 2} dθ
= 2π x 8/3
= 16π/3