Answer:
mass consumed by 235U each day = 2 kg
Explanation:
electrical power produced = 1 GW = 1 × 10⁹ × (6.24151 × 10¹⁸ ) eV
= 6.24151× 10²¹ MeV/s
thermal energy = 0.420 * 250 = 105 MeV

= 5.94 × 10¹⁹ fission/second
=5.94 × 10¹⁹× 24 × 60 ×60)
= 5.13 × 10²⁴ fission/day
mu = 235.04393 × 1.660× 10 ⁻²⁷ = 390.1729× 10⁻²⁷ Kg
M = mu ×5.13 × 10²⁴
= 390.1729× 10⁻²⁷ ×5.13 × 10²⁴
M = 2 kg(approx.)
mass consumed by 235U each day = 2 kg
Answer:
Option A) n
Explanation:
In accordance to Quantum Mechanical model of an atom:
- The Principle Quantum number (n) gives the description of the shell of an electron and the energy level of an electron in an atom.
- The angular momentum also referred to as Azimuthal Quantum number (l) gives the description of the shape of the orbitals and helps in determination of angular momentum magnitude.
- The magnetic quantum number (
) describes the energy levels or the number of orbitals contained in a subshell and the way these are oriented within.
- The spin quantum no. (
) determines the elelctron spin's direction which may be (
) or (
).
When light is incident parallel to the principal axis and then strikes a lens, the light will refract through the focal point on the opposite side of the lens.
To find the answer, we have to know about the rules followed by drawing ray-diagram.
<h3>What are the rules obeyed by light rays?</h3>
- If the incident ray is parallel to the principal axis, the refracted ray will pass through the opposite side's focus.
- The refracted ray becomes parallel to the major axis if the incident ray passes through the focus.
- The refracted ray follows the same path if the incident light passes through the center of the curve.
Thus, we can conclude that, when light is incident parallel to the principal axis and then strikes a lens, the light will refract through the focal point on the opposite side of the lens.
Learn more about refraction by a lens here:
brainly.com/question/13095658
#SPJ1
Answer:
<h2>5.25 kg.m/s</h2>
Explanation:
The momentum of an object can be found by using the formula
momentum = mass × velocity
From the question we have
momentum = 0.15 × 35
We have the final answer as
<h3>5.25 kg.m/s</h3>
Hope this helps you