Answer:
Scientists who study the Sun usually divide it up into three main regions: the Sun's interior, the solar atmosphere, and the visible "surface" of the Sun which lies between the interior and the atmosphere. There are three main parts to the Sun's interior: the core, the radiative zone, and the convective zone.
Explanation:
Hopefully this helps :)
Answer:
Explanation:
Electric field E = 4 x 10⁷ V / m
Dielectric constant k = 24
capacitance of capacitor
C = kε₀ A / d
d = plate separation
A = plate area
C = .89 x 10⁻⁶
V / d = electric field
for minimum d , electric field will be maximum
V / d = 4 x 10⁷
1930 / d = 4 x 10⁷
d = 1930 / 4 x 10⁷
d = 482.5 x 10⁻⁷ m
= 48.25 x 10⁻⁶ m
C = kε₀ A / d
.89 x 10⁻⁶ = 24 ε₀ A / d
A = .89 x 10⁻⁶ X d / 24 ε₀
A = .89 x 10⁻⁶ X 48.25 x 10⁻⁶ / 24 x 8.85 x 10⁻¹²
= 42.9 / 212.4
= .2019 m²
Answer:
Please mark as Brainliest!!
Explanation:
Explanation:
In a chemical formula, the symbols for each element in the compound are followed by subscripts that tell us how many of that element are in the compound.
For an example, let's look at the the formula for compound glucose:
C
6 H
12 O
6
________
The subscripts that follow each element's symbol indicate how many of that element are in the compound.
I would say it reflects the sun easily. That’s also how we see it :)
If the separation between the openings in a laser is increased, then the distance between the interference fringes decreases
<h3>What is Interference fringe ?</h3>
Interference fringe refers to bands caused by different lights which can be found in phase or not each other.
- Distances between laser fringes are short which is due to light wavelength.
- The interference fringes can be estimated by knowing slit separation and wavelength.
In conclusion, if the separation between the openings in a laser is increased, then the distance between the interference fringe decreases
Learn more about Interference fringe here:
brainly.com/question/14264436
#SPJ4