Answer:
4.163 m
Explanation:
Since the length of the bridge is
L = 380 m
And the bridge consists of 2 spans, the initial length of each span is

Due to the increase in temperature, the length of each span increases according to:

where
is the initial length of one span
is the temperature coefficient of thermal expansion
is the increase in temperature
Substituting,

By using Pythagorean's theorem, we can find by how much the height of each span rises due to this thermal expansion (in fact, the new length corresponds to the hypothenuse of a right triangle, in which the base is the original length of the spand, and the rise in heigth is the other side); so we find:

Answer:
* The first thing we observe is that the frequency response does not change
* The current that circulates in the circuit decreases due to the new resistance at the resonance point,
Z = R + R₂
Explanation:
The impedance of a series circuit is
Z₀² = R² + (X_L-X_C) ²
when we place another resistor in series the initial resistance impedance changes to
Z² = (R + R₂) ² + (X_L - X_C) ²
let's analyze this expression
* The first thing we observe is that the frequency response does not change
* The current that circulates in the circuit decreases due to the new resistance at the resonance point,
Z = R + R₂
Answer:
C
Explanation:
First find the electrical wattage
W = I^2 * R
R = 12 ohms
I = 2 amps
Wattage = 2^2 * 12
Wattage = 4* 12
Wattage = 48 watts.
Now you need to use the power formula
Work = Power * Time
Work = ?
Power = 48 watts
Time = 3 minutes = 3 * 60 = 180 seconds.
Work = 48 * 180
Work = 8640 J
That's C
Answer:
stress tension tensile strength
Explanation:
The maximum stress which a material can withstand when it is pulled apart is its: stress tension tensile strength.