1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Cerrena [4.2K]
3 years ago
7

Select the correct answer.

Mathematics
1 answer:
Hitman42 [59]3 years ago
8 0

Answer:

See explanation

Step-by-step explanation:

The question is incomplete, as the function is not given. So, I will make an assumption.

A quadratic function is represented as:

f(x) = ax^2 + bx + c

If a > 0, then the function has a minimum x value

E.g. f(x) = 4x^2 - 5x + 8 ------ 4 > 0

Else, then the function has a maximum x value

E.g. f(x)= -4x^2 -5x + 8 ---- -4 < 0

The maximum or minimum x value is calculated using:

x = -\frac{b}{2a}

For instance, the maximum of f(x)= -4x^2 -5x + 8 is:

x = -\frac{-5}{2*-4}

x = -\frac{5}{8}

So, the maximum of the function is:

f(x)= -4x^2 -5x + 8

f(-\frac{5}{8}) = -4 * (-\frac{5}{8})^2 - 5 *(-\frac{5}{8}) +8

f(-\frac{5}{8}) = 9.5625

You might be interested in
Suppose you pick and replace marbles from a bag, one after another. If the bag
Katyanochek1 [597]

Answer:

1/8

Step-by-step explanation:

There are 3 + 3 + 6 = 12 marbles in the bag and 12 * 12 = 144 ways to choose two marbles when replacing. There are 3 * 6 = 18 ways to choose a red marble and then a blue marble so the probability is 18 / 144 = 1 / 8.

5 0
3 years ago
PLEASE HELP!!!! DUE TODAY
Tems11 [23]

Answer:

Step-by-step explanation:

$ 86,000 lies in the category $84201 - $ 160725

Tax = 14,382.50+ 24% of the amount over $84,200  

Amount over $84,200= 86,000 - 84,200 = $1,800

Tax for the amount $ 1,800 =24% * 1800 = 0.24 * 1800

                                             = $ 432

Tax for the amount $86,000 = 14382.50 + 432

                                               =$ 14814.50

3 0
3 years ago
Ben made a four digit number with the numbers 7,4,3,9. The number was smaller than 4 and bigger than 1. The 7 cannot go in the t
victus00 [196]

3.479 is the answer


3 0
3 years ago
Evaluate the limit
wel

We are given with a limit and we need to find it's value so let's start !!!!

{\quad \qquad \blacktriangleright \blacktriangleright \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

But , before starting , let's recall an identity which is the <em>main key</em> to answer this question

  • {\boxed{\bf{a^{2}-b^{2}=(a+b)(a-b)}}}

Consider The limit ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}}

Now as directly putting the limit will lead to <em>indeterminate form 0/0.</em> So , <em>Rationalizing</em> the <em>numerator</em> i.e multiplying both numerator and denominator by the <em>conjugate of numerator </em>

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}\times \dfrac{\sqrt{x}+\sqrt{3\sqrt{x}-2}}{\sqrt{x}+\sqrt{3\sqrt{x}-2}}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-\sqrt{3\sqrt{x}-2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}{(x^{2}-4^{2})(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Using the above algebraic identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x})^{2}-(\sqrt{3\sqrt{x}-2})^{2}}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-(3\sqrt{x}-2)}{(x-4)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}+2}{\{(\sqrt{x})^{2}-2^{2}\}(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , here we <em>need</em> to <em>eliminate (√x-2)</em> from the denominator somehow , or the limit will again be <em>indeterminate </em>,so if you think <em>carefully</em> as <em>I thought</em> after <em>seeing the question</em> i.e what if we <em>add 4 and subtract 4</em> in <em>numerator</em> ? So let's try !

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{x-3\sqrt{x}-2+4-4}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(x-4)+2+4-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , using the same above identity ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+6-3\sqrt{x}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)+3(2-\sqrt{x})}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take minus sign common in <em>numerator</em> from 2nd term , so that we can <em>take (√x-2) common</em> from both terms

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)(\sqrt{x}+2)-3(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , take<em> (√x-2) common</em> in numerator ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-2)\{(\sqrt{x}+2)-3\}}{(\sqrt{x}-2)(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Cancelling the <em>radical</em> that makes our <em>limit again and again</em> <em>indeterminate</em> ;

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{\cancel{(\sqrt{x}-2)}\{(\sqrt{x}+2)-3\}}{\cancel{(\sqrt{x}-2)}(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}+2-3)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

{:\implies \quad \displaystyle \sf \lim_{x\to 4}\dfrac{(\sqrt{x}-1)}{(\sqrt{x}+2)(x+4)(\sqrt{x}+\sqrt{3\sqrt{x}-2})}}

Now , <em>putting the limit ;</em>

{:\implies \quad \sf \dfrac{\sqrt{4}-1}{(\sqrt{4}+2)(4+4)(\sqrt{4}+\sqrt{3\sqrt{4}-2})}}

{:\implies \quad \sf \dfrac{2-1}{(2+2)(4+4)(2+\sqrt{3\times 2-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{6-2})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+\sqrt{4})}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(2+2)}}

{:\implies \quad \sf \dfrac{1}{(4)(8)(4)}}

{:\implies \quad \sf \dfrac{1}{128}}

{:\implies \quad \bf \therefore \underline{\underline{\displaystyle \bf \lim_{x\to 4}\dfrac{\sqrt{x}-\sqrt{3\sqrt{x}-2}}{x^{2}-16}=\dfrac{1}{128}}}}

3 0
2 years ago
Read 2 more answers
Which activity is 6 times faster than the fastest rowing speed?
Debora [2.8K]
The answer is Luge. And I searched up your question and found the whole practice sheet with the answer key. Just put the question on google and you'll find it.


Hope this helps!
6 0
3 years ago
Read 2 more answers
Other questions:
  • Lower quartile of 6 8 10 12 14 15 15 20
    14·1 answer
  • W(y): y is odd<br><br> determine the truth set given the domain is Z
    6·1 answer
  • Which property is BEST to use when simplifying 5/18 + 2/9 + 13/18?
    9·1 answer
  • A potato gun is a device made out of plastic pipe that launches a potato using compressed air. They can be great fun, and even e
    9·1 answer
  • Which sequences are arithmetic?check all that apply.
    11·2 answers
  • URGENT<br> What is the distance between the two points (-5, 6) and (8,-4)?
    7·2 answers
  • Noah gathered data at his school among 7th and 8th graders to see if there was an association between grade level and handedness
    7·1 answer
  • !please help!<br> what is 22/22-12/22?
    13·1 answer
  • The best description of a dilation of a figure is:
    10·2 answers
  • DUE SOON PLS HELP: All of the points on the picture are on the same line. 1. Find the slope of the line. Explain your reasoning.
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!