Answer: x = 2
=============================================================
Explanation:
Refer to the diagram below.
I've added points D,E,F,G. This helps with labeling the segments and angles, and identifying the proper triangles (to see which are congruent pairs).
Triangle GEA is congruent to triangle GFA. We can prove this using the AAS congruence theorem. We have AG = AG as the pair of congruent sides, and the congruent pairs of angles are marked in the diagram (specifically the blue pairs of angles and the gray right angle markers)
Since triangle GEA is congruent to triangle GFA, this means the corresponding pieces segment GF and GE are the same length.
The diagram shows GF = 3x-4, so this means GE = 3x-4 as well.
----------------------
Through similar steps, we can show that triangle GEC is congruent to triangle GDC. We also use AAS here as well.
The congruent triangles lead to GD = GE. So GD = 3x-4. The diagram shows that GD = 6x-10
Since GD is equal to both 3x-4 and 6x-10, this must mean the two expressions are equal.
----------------------
Now let's solve for x
6x-10 = 3x-4
6x-3x = -4+10
3x = 6
x = 6/3
x = 2
Number of strings =

= 21 x 21 x 21 x 21 x 21 x 5 = 20 420 505
Answer: 20 420 505
Subtract these 2 equations,
5x-5x +3y-y = -4-6
2y = -10
y = -5
-5 is your answer.
Answer:
$825.60
Step-by-step explanation:
Since the price of it is $960.00, it means that it's 100%.
100% = 960
1% = 960 ÷ 100 = 9.6
14% = 9.6 x 14 = 134.40
Since they asked for after the discount, deduct the price of the discount with the original price.
Mountain bike after 14% discount =
960 - 134.40 = 825.60
Answer: The correct option is triangle GDC
Step-by-step explanation: Please refer to the picture attached for further details.
The dimensions give for the cube are such that the top surface has vertices GBCF while the bottom surface has vertices HADE.
A right angle can be formed in quite a number of ways since the cube has right angles on all six surfaces. However the question states that the diagonal that forms the right angle runs "through the interior."
Therefore option 1 is not correct since the diagonal formed in triangle BDH passes through two surfaces. Triangle DCB is also formed with its diagonal passing only along one of the surfaces. Triangle GHE is also formed with its diagonal running through one of the surfaces.
However, triangle GDC is formed with its diagonal passing through the interior as shown by the "zigzag" line from point G to point D. And then you have another line running from vertex D to vertex C.