It is opposite of what the equation is saying. Like if you had to add you would subtract or if you multiply you would divide.
Answer:- a.The given expression is equivalent to 
Given expression:- ![[\frac{(3xy^{-5})^3}{(x^{-2}y^2)^{-4}}]^{-2}](https://tex.z-dn.net/?f=%5B%5Cfrac%7B%283xy%5E%7B-5%7D%29%5E3%7D%7B%28x%5E%7B-2%7Dy%5E2%29%5E%7B-4%7D%7D%5D%5E%7B-2%7D)
![=[\frac{(3)^3x^3y^{-5\times3}}{x^{-2\times-4}y^{2\times-4}}]^{-2}.........(a^m)^n=a^{mn}](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B%283%29%5E3x%5E3y%5E%7B-5%5Ctimes3%7D%7D%7Bx%5E%7B-2%5Ctimes-4%7Dy%5E%7B2%5Ctimes-4%7D%7D%5D%5E%7B-2%7D.........%28a%5Em%29%5En%3Da%5E%7Bmn%7D)
![=[\frac{27x^3y^{-15}}{x^8y^{-8}}]^{-2}](https://tex.z-dn.net/?f=%3D%5B%5Cfrac%7B27x%5E3y%5E%7B-15%7D%7D%7Bx%5E8y%5E%7B-8%7D%7D%5D%5E%7B-2%7D)
![=[27x^{3-8}y^{-15-(-8)}]^{-2}............\frac{a^m}{a^n}=a^{m-n}](https://tex.z-dn.net/?f=%3D%5B27x%5E%7B3-8%7Dy%5E%7B-15-%28-8%29%7D%5D%5E%7B-2%7D............%5Cfrac%7Ba%5Em%7D%7Ba%5En%7D%3Da%5E%7Bm-n%7D)
![=[27x^{-5}y^{-7}]^{-2}=(27)^{-2}(x^{-5})^{-2}(y^{-7})^{-2}.........(a^m)^n=a^{mn}](https://tex.z-dn.net/?f=%3D%5B27x%5E%7B-5%7Dy%5E%7B-7%7D%5D%5E%7B-2%7D%3D%2827%29%5E%7B-2%7D%28x%5E%7B-5%7D%29%5E%7B-2%7D%28y%5E%7B-7%7D%29%5E%7B-2%7D.........%28a%5Em%29%5En%3Da%5E%7Bmn%7D)

Thus a. is the right answer.
Answer:60/100
Step-by-step explanation:
60/100 idk
Answer:
It will take 6 weeks
Step-by-step explanation:
Weeks = x
$18x = $108
X = $108/$18
X = 6
So 6 weeks
Answer:

Step-by-step explanation:
we are given the zeros and a point where it goes through of a quadratic equation
remember that when the roots are given then the function should be

where a is the leading coefficient and x1 and x2 are the roots
substitute:

simplify:

now the given point tells us that when x is 2 y is -14 therefore by using the point we can figure out a
substitute:

simplify parentheses:

simplify multiplication:

divide both sides by -7:

altogether substitute:

since it want the equation y should be

recall quadratic equation standard form:

so simplify parentheses:

distribute:

hence,
the equation of the parabola in standard form is <u>2</u><u>x</u><u>²</u><u>+</u><u>4</u><u>x</u><u>-</u><u>3</u><u>0</u><u>=</u><u>0</u>