Answer:
Part A
Kp = 3.4 x 10⁴
Part B
Kp = 2.4 x 10⁻¹⁴
Part C
Kp = 1.2 x 10⁹
Explanation:
2PH₃(g) + As₂(g) ⇌ 2 AsH₃(g) + P₂(g) Kp = 2.9 x 10⁻⁵
Kp = [AsH₃]²[P₂]/[PH₃]²[As] = 2.9 x 10⁻⁵
Part A
it is the inverse of the equilibrium given
Kp(A) = 1/ Kp = 1 / 2.9 x 10⁻⁵ = 3.4 x 10⁴
Part B
Is the equilibrium where the coefficients have been multiplied by 3,
Kp(B) = ( Kp )³ = ( 2.9 x 10⁻⁵ )³ = 2.4 x 10⁻¹⁴
Part C
This is the reverse equilibrium multipled by 2.
Kp(C) = ( 1/Kp)² = ( 1/ 2.9 x 10⁻⁵ )² = 1.2 x 10⁹
Answer:
Carboxylic acids produce hydrogen bonds amongst themselves and possess lower vapor pressure. They generally possess a sour odor. When an acid and a base react with each other to produce salt and water and comprises the combination of hydrogen and hydroxide ions, the reaction is termed the neutralization reaction. Thus, when carboxylic acid reacts with base the reaction is termed neutralization.
On the other hand, esters are known for their pleasant fragrances. They do not produce hydrogen bonds amongst themselves and possess higher vapor pressure. A hydration reaction in which free hydroxide dissociates the ester bonds between the glycerol and fatty acids of a triglyceride, leading to the formation of free fatty acids and glycerol is termed saponification.
Thus, the given blanks can be filled with carboxylic acid, carboxylic acid, esters, esters, esters, and carboxylic acid.
At 50 degrees Celsius and standard pressure inter-molecular forces of attraction are strongest in a sample of ethanoic acid.
Ethanoic acid has hydrogen atom bonded with a more electronegative atom; Oxygen. As a result, the molecule possesses strong intermolecular Hydrogen Bonds. Therefore; ethanoic acid, and all other carboxyllic acids have the tendency to form dimers.