The correct answer is approximately 11.73 grams of sulfuric acid.
The theoretical yield of water from Al(OH)3 is lower than that of H₂SO₄. As a consequence, Al(OH)3 is the limiting reactant, H₂SO₄ is in excess.
The balanced equation is:
2Al(OH)₃ + 3H₂SO₄ ⇒ Al₂(SO₄)₃ + 6H₂O
Each mole of Al(OH)3 corresponds to 3/2 moles of H₂SO₄. The molecular mass of Al(OH)3 is 78.003 g/mol. There are 15/78.003 = 0.19230 moles of Al(OH)3 in the five grams of Al(OH)3 available. Al(OH)3 is in limiting, which means that all 0.19230 moles will be consumed. Accordingly, 0.19230 × 3/2 = 0.28845 moles of H₂SO₄ will be consumed.
The molar mass of H₂SO₄ is 98.706 g/mol. The mass of 0.28845 moles of H₂SO₄ is 0.28845 × 98.706 = 28.289 g
40 grams of sulfuric acid is available, out of which 28.289 grams is consumed. The remaining 40-28.289 = 11.711 g is in excess, which is closest to the first option, that is, 11.73 grams of H₂SO₄.
the second statement is the correct one quarks are needed to balance charges in all subatomic particles such as neutrons, protons and electrons
Answer:
Molarity is halved when the volume of solvent is doubled.
Explanation:
Using the dilution equation (volume 1)(molarity 1)=(volume 2)(molarity 2), we can demonstrate the effects of doubling volume.
Suppose the starting volume is 1 L and the starting molarity is 1 M, and doubling the volume would make the final volume 2 L.
Plugging these numbers into the equation, we can figure out the final molarity.
(1 L)(1 M)=(2 L)(X M)
X M= (1 L x 1 M)/(2 L)
X M= 1/2 M
This shows that the molarity is halved when the volume of solvent is doubled.
<span>The outer electrons are not as tightly bound as ones closer to the nucleus</span>
The mass of CO2 produced by 26g of acetylene is 88g.
Given ,
In an oxyacetylene torch, acetylene gas (ethyne; HCCH) burns to produce carbon dioxide and water vapour.
The acetylene combustion reaction is given by,
H2O + HCCH + 5/2 O=O 2CO2
Heat of reaction for acetylene combustion = 1259kj/mol
CO2 has a molecular mass of 44g/mol.
2 moles of CO2 have a molecular mass of 88g.
On combustion, 1 mole of acetylene yields 2 moles of CO2.
Thus, 26g of acetylene produces 88g of CO2 when burned.
As a result, the mass of carbon dioxide produced by 26g of acetylene is 88g.
Learn more about acetylene here :
brainly.com/question/15346128
#SPJ4