Answer:
Mass is both a property of a physical body and a measure of its resistance to acceleration when a net force is applied. An object's mass also determines the strength of its gravitational attraction to other bodies. The basic SI unit of mass is the kilogram.
Gravity, or gravitation, is a natural phenomenon by which all things with mass or energy—including planets, stars, galaxies, and even light—are brought toward one another. On Earth, gravity gives weight to physical objects, and the Moon's gravity causes the ocean tides.
When dealing with the force of gravity between two objects, there are only two things that are important – mass, and distance. The force of gravity depends directly upon the masses of the two objects, and inversely on the square of the distance between them.
Gravitational energy or gravitational potential energy is the potential energy a massive object has in relation to another massive object due to gravity. It is the potential energy associated with the gravitational field, which is released when the objects fall towards each other.
In science and engineering, the weight of an object is the force acting on the object due to gravity. Some standard textbooks define weight as a vector quantity, the gravitational force acting on the object. Others define weight as a scalar quantity, the magnitude of the gravitational force
Newton's law of universal gravitation is usually stated as that every particle attracts every other particle in the universe with a force that is directly proportional to the product of their masses and inversely proportional to the square of the distance between their centers.
Explanation:
Answer:
Oxygen
Explanation:
One mole of atoms of oxygen has a mass of 16 g, as 16 is the atomic weight of oxygen, and contains 6.02 X 1023 atoms of oxygen.
Explanation:
First, calculate the moles of
using ideal gas equation as follows.
PV = nRT
or, n = 
=
(as 1 bar = 1 atm (approx))
= 0.183 mol
As, Density = 
Hence, mass of water will be as follows.
Density = 
0.998 g/ml =
mass = 3.25 g
Similarly, calculate the moles of water as follows.
No. of moles = 
=
= 0.180 mol
Moles of hydrogen =
= 0.36 mol
Now, mass of carbon will be as follows.
No. of moles = 
0.183 mol =
= 2.19 g
Therefore, mass of oxygen will be as follows.
Mass of O = mass of sample - (mass of C + mass of H)
= 3.50 g - (2.19 g + 0.36 g)
= 0.95 g
Therefore, moles of oxygen will be as follows.
No. of moles = 
=
= 0.059 mol
Now, diving number of moles of each element of the compound by smallest no. of moles as follows.
C H O
No. of moles: 0.183 0.36 0.059
On dividing: 3.1 6.1 1
Therefore, empirical formula of the given compound is
.
Thus, we can conclude that empirical formula of the given compound is
.
Q. How many molecules of H2O can be produced from reactants in container below?
A. 3 molecule of molecules H2O will be produced from reactants in container.
<em><u>Explanation</u><u>:</u></em>
There are seven molecules of H2 and three molecule of O2 are there in the container Q, 6 molecules of H2 will react with 3 molecules of O2 to produce 3 molecules of H2O. One molecule of Hydrogen will not take part in reaction and will be present in container Q after then reaction, and the mass in overall reaction is conserved!
<em><u>Thanks for joining brainly community!</u></em>
Answer:
The second one
Explanation:
Gas pressure is caused by gas molecules bouncing off the container walls and each other. Every time a molecule changes direction because it hits a wall, the change in momentum results in a small push. Due to the large number of molecules involved, the pushes add up to a large amount of pressure.