Distances in 2- and 3-dimensions (and even higher dimensions) can be found using the Pythagorean theorem. The straight-line distance can be considered to be the hypotenuse of a right triangle whose sides are the horizontal and vertical differences between the coordinates.
Here, you have A = (0, 0) and B = (3, 6). The horizontal distance between the points is ...
... 3 - 0 = 3 . . . . the difference of x-coordinates
The vertical distance between the points is ...
... 6 - 0 = 6 . . . . the difference of y-coordinates
Then the straight-line distance (d) between the points is found from the Pythagorean theorem, which tells you ...
... d² = 3² + 6²
... d = √(9 + 36) = √45 ≈ 6.7 . . . units
Go find ppl who need answers and get more points that’s what I’m doing sorry
The correct answer is C
Sigma Notation is when we take all of the whole numbers between the starting point (which can be found as the number under the sigma sign) and the end number (which can be found above the sigma sign). Therefore, we will add together all of the values of 3k + 2 for when k is equal to all of the numbers between 2 and 7. So, let's evaluate each one first.
When k = 2
3(2) + 2 = 8
When k = 3
3(3) + 2 = 11
When k = 4
3(4) + 2 = 14
When k = 5
3(5) + 2 = 17
When k = 6
3(6) + 2 = 20
When k = 7
3(7) + 2 = 23
So we know we have the following.
8 + 11 + 14 + 17 + 20 + 23
Now for the number after the comma, we are just looking for the answer of them all added together. So the final answer should be
8 + 11 + 14 + 17 + 20 + 23, 93
No hay solución en la que ambas trayectorias estén en la misma posición, puesto que no existe el riesgo de que sufran un choque entre ellos.
-------------------------
La trayectoria del primero es:


Para el segundo, tiene-se que:


Igualando los valores de x:



No hay solución en la que ambas trayectorias estén en la misma posición, puesto que no existe el riesgo de que sufran un choque entre ellos.
Un problema similar es dado en brainly.com/question/24653364
4 because 1/4 is basically dividing by 4