At the present time, the only way we know of that light can get shifted
toward the blue end of the spectrum is the Doppler effect ... wavelengths
appear shorter than they should be when the source is moving toward us.
IF that's true in the case of the Andromeda galaxy, it means the galaxy is
moving toward us.
We use the same reasoning to conclude that all the galaxies whose light is red-shifted are moving away from us. That includes the vast majority of all galaxies that we can see, and it strongly supports the theory of the big bang
and the expanding universe.
If somebody ever comes along and discovers a DIFFERENT way that light
can get shifted to new, longer or shorter wavelengths, then pretty much all
of modern Cosmology will be out the window. There's a lot riding on the
Doppler effect !
I uploaded the answer to a file hosting. Here's link:
tinyurl.com/wpazsebu
Answer:
a) > x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
b) 
And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Explanation:
Part a
For this case we have the following data:
x: 1,2,3,4,5
y: 1.9,3.5,3.7,5.1, 6
For this case we can use the following R code:
> x<-c(1,2,3,4,5)
> y<-c(1.9,3.5,3.7,5.1,6)
> linearmodel<-lm(y~x)
And the output is given by:
> linearmodel
Call:
lm(formula = y ~ x)
Coefficients:
(Intercept) x
1.10 0.98
Part b
For this case we have the following trend equation given:

And if we compare this with the general model 
We see that the slope is m= 0.98 and the intercept b = 1.10
Answer:
a. much stronger than that of Earth and greatly extended.
Explanation:
Jupiter is a gas giant. It mainly consists of hydrogen and helium and also may have rocky core. Jupiter has the fastest rotational period among the planets of the solar system. One day on Jupiter lasts for 11 hours. This rotation causes the hydrogen in the atmosphere to rotate at great speed.
The rotation of the hydrogen generates the magnetic field of Jupiter. It is almost 14 times greater than the Earth's magnetic field in terms of strength and the second largest in terms of distance after the sun.