B the energy of the car. Sorry if this is not right
A psychologist who would claim that a client's personal experience and viewpoint influence behavior more than events in reality would probably use cognitive psychology mixed with developmental aspects to explain the behavior and personality of a person.
Answer: a) 0.78 m/s b) 1.57 m/s
Explanation:
M = father's mass
m = son's mass = M/3
V = father's initial speed
v = son's initial speed
(1/2)MV^2 = (1/2)*(1/2)*m v^2
M*V^2 = (1/2)(M/3)v^2
V^2/v^2 = 1/4
V = v/2
Second equation:
(1/2)M*(V + 1.4)^2 = (1/2)m*v^2
= (1/2)*(M/3)*(3V)^2
cancel out the M's and (1/2)'s
(V + 1.4)^2 = 3V^2
V^2 + 2.8V + 1.96 = 3V^2
V^2 -1.4V -0.98 = 0
V^2 = 0.98/0.4 = 2.45
V = 1.57
Weight of an object is given by the formula W = m x g , where
m : mass of the object
g : gravitational acceleration
It is <u>independent of the horizontal </u><u>acceleration</u>.
<h3>What do we mean by weight of an object?</h3>
Weight is a gauge of how strongly gravity is<u> pulling something down.</u> It is dependent on the object's mass, or how much matter it consists of. It also depends on the <u>object's uniformly distributed</u> downward acceleration caused by gravity.
This equation can be used to express weight:
W = m x g
<h3>What is the difference between weight and mass of an object?</h3>
In everyday speech, the phrases "mass" and "weight" are frequently used interchangeably; nevertheless, the two concepts don't have the same meaning. In contrast to weight, which is a <u>measurement of</u> how the <u>force</u> of gravity works upon a mass, mass is the <u>amount of substance</u> in a material.
To learn more about gravity and acceleration :
brainly.com/question/13860566
#SPJ4
Answer:
0.25 m
Explanation:
Electromagnetic waves consist of oscillations of the electric and the magnetic field, oscillating in a plane perpendicular to the direction of motion the wave.
All electromagnetic waves travel in a vacuum always at the same speed, the speed of light, whose value is:
Microwave is an example of electromagnetic waves.
The relationship between wavelength and frequency for an electromagnetic wave is:

where
is the wavelength
is the speed of light
f is the frequency
For the microwave in this problem,

So its wavelength is
