Answer:
Explanation:
Given that
Force constant k=8.6N/m
Weight =64g=64/1000=0.064kg
Extension is 45mm=45/1000= 0.045m
It will have it highest spend when the Potential energy is zero
Therefore energy in spring =change in kinetic energy
Ux=∆K.e
½ke² = ½mVf² — ½mVi²
Initial velocity is 0, Vi=0m/s
½ke² = ½mVf²
½ ×8.6 × 0.045² = ½ ×0.064 ×Vf²
0.0087075 = 0.032 Vf²
Then, Vf² = 0.0087075/0.032
Vf² = 0.2721
Vf=√0.2721
Vf= 0.522m/s
The time it will have this maximum velocity?
Using equation of motion
Vf= Vi + gr
0.522= 0+9.81t
t=0.522/9.81
t= 0.0532sec
t= 53.2 milliseconds
a) The velocity of the boat relative to the shore is 3.40 m/s and b) The position of the boat relative to its point of origin after 3s is 10.20m.
Here it is given that the speed of the boat (x) = 2.20m/s
The speed of the stream current (y) = 1.20m/s
a) We have to find the velocity of the boat relative to the shore.
The speed of the boat = x + y
= 2.20 + 1.20
= 3.40m/s
b) Now we have to find the position of the boat after 3s
The formula for speed:
Speed = Distance/ Time
distance = speed × time
speed = 3.40m/s
Time = 3s
distance = 3.40 × 3
= 10.20 m
Therefore we get a) speed as 3.40m/s and b) distance as 10.20m.
To know more about the boat and stream refer to the link given below:
brainly.com/question/382952
#SPJ4
When there's a hazard ahead, it's almost always quicker for you to steer away than to come to a full stop.
<h3>What is an hazard?</h3>
Hazard refers to any obstacle or other feature which causes risk or danger.
Living organisms respond to hazards via the production of adrenaline hormone. This hormone causes a flight response away from the hazard.
Therefore, when there's a hazard ahead, it's almost always quicker for you to steer away than to come to a full stop.
Learn more about hazards at: brainly.com/question/5338299
Answer:
C) gravity separated from the unified force, strong force separated from the unified force, inflationary expansion occurred, electromagnetic and weak forces separated from the unified force, quarks and electrons formed