Answer:
g(q) = 
Step-by-step explanation:
Given
- 7q + 12r = 3q - 4r
Rearrange making r the subject
Add 7q to both sides
12r = 10q - 4r ( add 4r to both sides )
16r = 10q ( divide both sides by 16 )
r =
=
, thus
g(q) = 
Step-by-step explanation:
Draw diagonal AC
The triangle ABC has sides 17 and 25
Say AB is 17, BC is 25
Draw altitude on side BC from A , say h
h = 17 sin B
Area = 25*17 sin B = 408
sin B = 24/25
In ∆ ABC
Cos B = +- 7/25
= 625 + 289 — b^2 / 2*25*17
b^2 = 914 — 14*17 = 676
b = 26
h = 17*24/25 = 408/25 = 16.32
Draw the second diagonal BD
In ∆ BCD, draw altitude from D, say DE =h
BD^2 = h^2 + {(25 + sqrt (289 -h^2) }^2
BD^2 = 16.32^2 + (25 + 4.76)^2
= 885.6576 + 266.3424
BD = √ 1152 = 33.94 m
Answer:
the answer is 14 2/3, hope this answers your question
Step-by-step explanation:
Answer:
19
Step-by-step explanation:
Answer:
a. D and E are similar but not congruent.
Step-by-step explanation:
Let's analyse each statement and determine which is true about the 3 given quadrilaterals:
a. "D and E are similar but not congruent." TRUE.
D is similar to E because, every segment of D is proportional to the corresponding segments of E. The ratio of their corresponding segments are equal.
D and E are not congruent because their segments are not of equal length. Thus, they have the same shape but different sizes.
b. "E and F are similar and congruent." NOT TRUE.
E and F has the same size, hence they are congruent. However, they are not similar, because they don't have the same shape. Their corresponding lengths are not proportional.
c. "D and E are similar and congruent." NOT TRUE.
Since statement (a) is TRUE, statement (c) cannot be true.
D and E are similar because they have the same shape and the ratio of their corresponding sides are the same. D and E are not congruent, because they are not of the same size.
d. "F and D are similar but not congruent." NOT TRUE.
F and D has the same size but the ratio of their corresponding sides are not the same.