<h2>Relative Humidity</h2>
Explanation:
- Humidity is the amount of moisture content present in the atmosphere.
Humidity is of two types:
- Absolute humidity.
- Relative humidity.
- Absolute humidity is the ratio of the amount of moisture content in the air to the unit volume of the air.
- Relative humidity can be derived as the ratio of moisture content in the air to the maximum amount of moisture that the air constitutes.
- Hence, the required answer is Relative humidity.
The answer would 5.66 x 10 power of 24
Answer:

The temperature for ![\Delta G^o=0[/tex is [tex]T=328.6 K](https://tex.z-dn.net/?f=%5CDelta%20G%5Eo%3D0%5B%2Ftex%20is%20%5Btex%5DT%3D328.6%20K)
Explanation:
The three thermodinamic properties (enthalpy, entropy and Gibbs's energy) are linked in the following formula:

Where:
is Gibbs's energy in kJ
is the enthalpy in kJ
is the entropy in kJ/K
is the temperature in K
Solving:


For
:





Answer:
8.37 grams
Explanation:
The balanced chemical equation is:
C₆H₁₂O₆ ⇒ 2 C₂H₅OH (l) + 2 CO₂ (g)
Now we are asked to calculate the mass of glucose required to produce 2.25 L CO₂ at 1atm and 295 K.
From the ideal gas law we can determine the number of moles that the 2.25 L represent.
From there we will use the stoichiometry of the reaction to determine the moles of glucose which knowing the molar mass can be converted to mass.
PV = nRT ⇒ n = PV/RT
n= 1 atm x 2.25 L / ( 0.08205 Latm/kmol x 295 K ) =0.093 mol CO₂
Moles glucose required:
0.093 mol CO₂ x ( 1 mol C₆H₁₂O₆ / 2 mol CO₂ ) = 0.046 mol C₆H₁₂O₆
The molar mass of glucose is 180.16 g/mol, then the mass required is
0.046 mol x 180.16 g/mol = 8.37 g