1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
3 years ago
9

Annabelle went to the grocery store and bought bottles of soda and bottles of juice.

Mathematics
1 answer:
lora16 [44]3 years ago
5 0

Answer:

120 = 3y + t

Step-by-step explanation

because you purchase 3 times as many y then t. Overall, your answer should end up as 120 by using an equation like this.

You might be interested in
A random sample of 10 parking meters in a resort community showed the following incomes for a day. Assume the incomes are normal
GenaCL600 [577]

Answer:

A 95% confidence interval for the true mean is [$3.39, $6.01].

Step-by-step explanation:

We are given that a random sample of 10 parking meters in a resort community showed the following incomes for a day;

Incomes (X): $3.60, $4.50, $2.80, $6.30, $2.60, $5.20, $6.75, $4.25, $8.00, $3.00.

Firstly, the pivotal quantity for finding the confidence interval for the population mean is given by;

                         P.Q.  =  \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }  ~ t_n_-_1

where, \bar X = sample mean income = \frac{\sum X}{n} = $4.70

            s = sample standard deviation = \sqrt{\frac{\sum (X-\bar X)^{2} }{n-1} }  = $1.83

            n = sample of parking meters = 10

            \mu = population mean

<em>Here for constructing a 95% confidence interval we have used a One-sample t-test statistics because we don't know about population standard deviation.</em>

<u>So, 95% confidence interval for the population mean, </u>\mu<u> is ;</u>

P(-2.262 < t_9 < 2.262) = 0.95  {As the critical value of t at 9 degrees of

                                            freedom are -2.262 & 2.262 with P = 2.5%}  

P(-2.262 < \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } } < 2.262) = 0.95

P( -2.262 \times {\frac{s}{\sqrt{n} } } < {\bar X-\mu < 2.262 \times {\frac{s}{\sqrt{n} } } ) = 0.95

P( \bar X-2.262 \times {\frac{s}{\sqrt{n} } } < \mu < \bar X+2.262 \times {\frac{s}{\sqrt{n} } } ) = 0.95

<u>95% confidence interval for</u> \mu = [ \bar X-2.262 \times {\frac{s}{\sqrt{n} } } , \bar X+2.262 \times {\frac{s}{\sqrt{n} } } ]

                                         = [ 4.70-2.262 \times {\frac{1.83}{\sqrt{10} } } , 4.70+ 2.262 \times {\frac{1.83}{\sqrt{10} } } ]

                                         = [$3.39, $6.01]

Therefore, a 95% confidence interval for the true mean is [$3.39, $6.01].

The interpretation of the above result is that we are 95% confident that the true mean will lie between incomes of $3.39 and $6.01.

Also, the margin of error  =  2.262 \times {\frac{s}{\sqrt{n} } }

                                          =  2.262 \times {\frac{1.83}{\sqrt{10} } }  = <u>1.31</u>

4 0
3 years ago
A coffee packaging plant claims that the mean weight of coffee in its containers is at least 32 ounces. A random sample of 15 co
Luda [366]

Answer:

We conclude that the mean weight of coffee in its containers is at least 32 ounces which means that the data support the claim.

Step-by-step explanation:

We are given that a coffee packaging plant claims that the mean weight of coffee in its containers is at least 32 ounces.

A random sample of 15 containers were weighed and the mean weight was 31.8 ounces with a sample standard deviation of 0.48 ounces.

Let \mu = <u><em>mean weight of coffee in its containers.</em></u>

SO, Null Hypothesis, H_0 : \mu \geq 32 ounces     {means that the mean weight of coffee in its containers is at least 32 ounces}

Alternate Hypothesis, H_A : \mu < 32 ounces      {means that the mean weight of coffee in its containers is less than 32 ounces}

The test statistics that would be used here <u>One-sample t-test statistics</u> as we don't know about population standard deviation;

                             T.S. =  \frac{\bar X-\mu}{\frac{s}{\sqrt{n} } }  ~ t_n_-_1

where, \bar X = sample mean weight = 31.8 ounces

             s = sample standard deviation = 0.48 ounces

             n = sample of containers = 15

So, <u><em>the test statistics</em></u>  =  \frac{31.8 -32}{\frac{0.48}{\sqrt{15} } }  ~ t_1_4  

                                      =  -1.614

The value of t test statistics is -1.614.

<u>Now, at 0.01 significance level the t table gives critical value of -2.624 at 14 degree of freedom for left-tailed test.</u>

Since our test statistic is more than the critical value of t as -1.614 > -2.624, so we have insufficient evidence to reject our null hypothesis as it will not fall in the rejection region due to which <u><em>we fail to reject our null hypothesis</em></u>.

Therefore, we conclude that the mean weight of coffee in its containers is at least 32 ounces which means that the data support the claim.

8 0
4 years ago
What’s the difference need help
labwork [276]
You would circle the 5
4 0
3 years ago
Which expression has the same value as -5, + (-4)?
marissa [1.9K]
First row, the answer on the left , -5 3/4 - 4 2/3
3 0
3 years ago
What is 8/12 + A/12=2/b
il63 [147K]

Answer:

the answer i got was a=−8b+24/b

Step-by-step explanation:

hoped I helped:)

8 0
3 years ago
Other questions:
  • In simplest radical form, what are the solutions to the quadratic equation 0 = –3x2 – 4x + 5
    5·1 answer
  • Which of the following is a solution of y - x &lt; -3?<br> A. (6, 2)<br> B. (2, 6)<br> C. (2, -1)
    7·1 answer
  • WILL GIVE BRAINLIEST<br> FIND VOLUME<br> 60 is the area of the base
    10·1 answer
  • Find the mean absolute deviation (MAD) of the data in the pictograph below
    15·2 answers
  • What is the diameter of the following?
    11·1 answer
  • Which of the following is NOT a solution to the system of inequalities?
    6·1 answer
  • Find the value of X in the triangle shown below.
    6·1 answer
  • Which is the correct answer
    13·1 answer
  • State the range of the function f: x➡x^2, x is an element of a real number​
    13·1 answer
  • The surface area of a regular triangular pyramid is 197.1 square meter. The slant height is 12. The area of the base is 35.1 squ
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!