Answer:
0.014s
Explanation:
Given parameters:
mass of golf ball = 0.059kg
force applied = 290N
velocity = 69m/s
initial velocity = 0m/s
Unknown:
Time of contact = ?
Solution;
We know that momentum is the quantity of motion of body possess;
Momentum = mass x velocity
Momentum = 0.059 x 69 = 4.1kgm/s
Also; impulse is the effect of the force acting on a body;
impulse = force x time = momentum
So;
Force x time = momentum
Time =
=
= 0.014s
Answer:
B. A car of mass 2000 kg with speed 7 m/s
Explanation:
The kinetic energy of an object is given by:

where m is the mass of the object and v is its speed.
From the formula, we see that the larger the mass and the speed of the object, the larger its kinetic energy. Among the choices given, we see that the car with largest mass and largest speed is car B, which has a mass of 2000 kg and speed of 7 m/s. Its kinetic energy is:

We can verify that the other cars have smaller kinetic energy. In fact:
- Car A: 
- Car C: 
- Car D: 
So, car B is the one which has most kinetic energy.
C. The Densities are equal.
<h3>
What is density?</h3>
Density is mass per unit volume or mass of a unit volume of a material substance.
If m1, V1 and D1 = mass, volume and density respectively of ball C
m2, V2 and D2 = mass, volume and density respectively of ball D
According to the Question ,

Therefore,

Hence, D1 = D2
Learn more about density here:brainly.com/question/15164682
#SPJ1
Answer:
F=(-4.8*10^22,0,0) N
Explanation:
<u>Given :</u>
We are given the magnitude of the momentum of the planet and let us call this momentum (p_now) and it is given by p_now = 2.60 × 10^29 kg·m/s. Also, we are given the force exerted on the planet F = 8.5 × 10^22 N. and the angle between the planet and the star is Ф = 138°
Solution :
We are asked to find the parallel component of the force F The momentum here is not constant, where the planet moving along a curving path with varying speed where the rate change in momentum and the force may be varying in magnitude and direction. We divide the force here into two parts: a parallel force F to the momentum and a perpendicular force F' to the momentum.
The parallel force exerted to the momentum will speed or reduce the velocity of the planet and does not change its moving line. Let us apply the direction cosines, we could obtain the parallel force as next
F=|F|cosФp (1)
Where the parallel force F is in the opposite direction of p as the angle between them is larger than 90°. Now we can plug our values for 0 and I F I into equation (1) to get the parallel force to the planet
F=|F|cosФp
=-4.8*10^22 N*p
<em>As this force is in one direction, we could get its vector as next </em>
F=(-4.8*10^22,0,0) N
F=(0,-4.8*10^22,0) N
F=(0,0-4.8*10^22) N
The cosine of 138°, the angle between F and p is, is a negative number, so F is opposite to p. The magnitude of the planet's momentum will decrease.