The picture isn’t clear so I can’t read the dimensions of the box but I can try my best to guide u through the question.
For part a u need to find the volume of the box as that will equal the volume of sand that can be filled inside.
For this u multiply the height, width and length of the box.
For part b the mass of sand alone will be
=Mass of box + sand - Mass of empty box
=216 - 40
=176 grams
For part c the density of sand can be calculated by the formula
Density= Mass/Volume
So the mass (176g) / volume from part a
For part d u need to know that something will float if it has a lower density than what it is floating in. If the final density of sand that was found in part c is less than the density of gold (19.3 g/cm^3) it will float. Otherwise it will sink.
Hope this helped!
Answer:
time is 3333.33 min or 55.55 hr
Explanation:
given data
reactor operating = 1 MW
negative reactivity = $5
power = 1 miliwatt
to find out
how long does it take
solution
we know here power coefficient that is
power coefficient = 
power coefficient = 1
so time required to reach power is
power = reactivity × time / power coefficient + reactor operating
1 ×
= -5 t / 1 + 1 × 
5t =
- 
t = 199999.99 sec
so time is 3333.33 min or 55.55 hr
Answer:
2m/s/s
Explanation:
The formula goes- F=MA
F-Force M-Mass & A-Acceleration
We need to rearrange this formula to find the acceleration-
A=F/M
All we need to do now is substitute the values in
A=2000N/1000kg
A=2m/s^2
In the given option the last option (2m/s/s) would be the ans, as it's the same as 2m/s^2
So ya, I guess that's all
Answer:
K = 960 J
Explanation:
Given that,
Mass of a child = 20 kg
Mass of a sled = 10 kg
Speed of child on sled = 8 m/s
We need to find the kinetic energy of the sled with the child.
The total mass of child and the sled = 20 kg + 10 kg
= 30 kg
The formula for the kinetic energy of an object is given by :

Hence, the kinetic energy of the sled with the child is 960 J.