Answer: 30
Step-by-step explanation:
10 is the started fingers of the hands
2 is fingers, 4 are the hands, 7 the fingers of the hands
2 + (4 · 7) = 30
-3 is the legs per day, and 365 are the days per year
-3 · 365 = -1095
this is a bizarre question
It's false. It's a product so...
Derivative of the first TIMES the second PLUS derivative of second TIMES the first.
Derivative of the first (x^3) = 3x^2
Times the second = 3x^2 * e^x
Derivative of the second = e^x (remains unchanged)
Times the first = e^x * x^3
So the answer would be (3x^2)(e^x) + (e^x)(x^3)
which can be factorised to form x^2·e^x(3 + x)
To find the area of the curve subject to these constraints, we must take the integral of y = x ^ (1/2) + 2 from x=1 to x=4
Take the antiderivative: Remember that this what the original function would be if our derivative was x^(1/2) + 2
antiderivative (x ^(1/2) + 2) = (2/3) x^(3/2) + 2x
* To check that this is correct, take the derivative of our anti-derivative and make sure it equals x^(1/2) + 2
To find integral from 1 to 4:
Find anti-derivative at x=4, and subtract from the anti-derivative at x=1
2/3 * 4 ^ (3/2) + 2(4) - (2/3) *1 - 2*1
2/3 (8) + 8 - 2/3 - 2 Collect like terms
2/3 (7) + 6 Express 6 in terms of 2/3
2/3 (7) + 2/3 (9)
2/3 (16) = 32/3 = 10 2/3 Answer is B