Answer: -39.2 m/s or 39.2 m/s directed downwards
Explanation:
This situation is a good example of Free Fall, where the main condition is that the initial velocity must be zero
, and the acceleration is constant (acceleration due gravity).
So, in order to calculate the final velocity
of the rock just at the moment it hitsthe bottom of the cliff, we will use the following equation:

Where:
is the acceleration due gravity (directed downwards)
is the time it takes to the rock to fall down the cliff

This is the rock's final velocity and its negative sign indicates it is directed downwards
Answer:
Explanation:
Using Boyles law
Boyle's law states that, the volume of a given gas is inversely proportional to it's pressure, provided that temperature is constant
V ∝ 1 / P
V = k / P
VP = k
Then,
V_1 • P_1 = V_2 • P_2
So, if we want an increase in pressure that will decrease volume of mercury by 0.001%
Then, let initial volume be V_1 = V
New volume is V_2 = 0.001% of V
V_2 = 0.00001•V
Let initial pressure be P_1 = P
So,
Using the equation above
V_1•P_1 = V_2•P_2
V × P = 0.00001•V × P_2
Make P_2 subject of formula by dividing be 0.00001•V
P_2 = V × P / 0.00001 × V
Then,
P_2 = 100000 P
So, the new pressure has to be 10^5 times of the old pressure
Now, using bulk modulus
Bulk modulus of mercury=2.8x10¹⁰N/m²
bulk modulus = P/(-∆V/V)
-∆V = 0.001% of V
-∆V = 0.00001•V
-∆V = 10^-5•V
-∆V/V = 10^-5
Them,
Bulk modulus = P / (-∆V/V)
2.8 × 10^10 = P / 10^-5
P = 2.8 × 10^10 × 10^-5
P = 2.8 × 10^5 N/m²
A hypothesis is an educated prediction that can be tested.
Answer:
Explanation:
Y = 5 Sin27( .2x-3t)
= 5 Sin(5.4x - 81 t )
Amplitude = 5 m
Angular frequency ω = 81
frequency = ω / 2π
= 81 / (2 x 3.14 )
=12.89
Wave length λ = 2π / k ,
k = 5.4
λ = 2π / 5.4
= 1.163 m
Phase velocity =ω / k
= 81 / 5.4
15 m / s.
The wave is travelling in + ve x - direction.