Answer:
Wavelength,
Explanation:
It is given that,
Frequency, f = 99.5 MHz = 99.5 × 10⁶ Hz
We need to find the wavelength of the radio waves from an FM station operating at above frequency. The relationship between the frequency and the wavelength is given by :
c = speed of light
So, the wavelength of the radio waves from an FM station is 3.01 m. Hence, this is the required solution.
Answer:
The total surface are of the bowl is given by: 0.0532*pi m² (approximately 0.166533 m²)
Explanation:
The total surface area of the semi-spherical bowl can be decomposed in three different sections: 1) an outer semi-sphere of radius 12 cm, 2) an inner semi-sphere of radius 10 cm, and 3) the edge, which is a 2-dimensional ring with internal radius of 10 cm and external radius of 12 cm. We will compute the areas independently and then sum them all.
a) Outer semi-sphere:
A1 = 2*pi*r² = 2*pi*(12 cm)² = 288*pi cm² = 904.78 cm²
b) Inner semi-sphere:
A2 = 2*pi*(10 cm)² = 200*pi cm² = 628.32 cm²
c) Edge (Ring):
A3 = pi*(r1² - r2²) = pi*((12 cm)²-(10 cm)²) = pi*(144-100) cm² = 44*pi cm² = 138.23 cm²
Therefore, the total surface area of the bowl is given by:
A = A1 + A2 + A3 = 288*pi cm² + 200*pi cm² + 44*pi cm² = 532*pi cm² (approximately 1665.33 cm²)
Changing units to m², as required in the problem, we get:
A = 532*pi cm² * (1 m² / 10, 000 cm²) = 0.0532*pi m² (approximately 0.166533 m²)
Given Information:
Magnetic field = B = 1×10⁻³ T
Frequency = f = 72.5 Hz
Diameter of cell = d = 7.60 µm = 7.60×10⁻⁶ m
Required Information:
Maximum Emf = ?
Answer:
Maximum Emf = 20.66×10⁻¹² volts
Explanation:
The maximum emf generated around the perimeter of a cell in a field is given by
Emf = BAωcos(ωt)
Where A is the area, B is the magnetic field and ω is frequency in rad/sec
For maximum emf cos(ωt) = 1
Emf = BAω
Area is given by
A = πr²
A = π(d/2)²
A = π(7.60×10⁻⁶/2)²
A = 45.36×10⁻¹² m²
We know that,
ω = 2πf
ω = 2π(72.5)
ω = 455.53 rad/sec
Finally, the emf is,
Emf = BAω
Emf = 1×10⁻³*45.36×10⁻¹²*455.53
Emf = 20.66×10⁻¹² volts
Therefore, the maximum emf generated around the perimeter of the cell is 20.66×10⁻¹² volts
Answer: 49.5 m
Explanation:
The speed of sound is given by a relation between the distance and the time :
(1)
Where:
is the speed of sound in air (taking into account this value may vary according to the medium the sound wave travels)
since we are told th hunter was initially 412.5 meters from the cliff and then moves a distance towards the cliff
Since the time given as data (2.2 s) is the time it takes to the sound wave to travel from the hunter's gun and then go back to the position where the hunter is after being reflected by the cliff
Having this information clarified, let's isolate and then find :
(2)
(3)
Finding :
This is the distance at which the hunter is from the cliff.