Step-by-step explanation:

Answer:
No
Step-by-step explanation:
24 - 3 = 21 minutes
21 > 18
Answer: D) 13y^25 and 2y^25
Like terms involve the same variables, and each of those variables must have the same exponents.
Another example of a pair of like terms would be 5x^3y^2 and 7x^3y^2. Both involve the variable portion "x^3y^2" which we can replace with another variable, say the variable z. That means 5x^3y^2 becomes 5z and 7x^3y^2 becomes 7z. After getting to 5z and 7z, it becomes more clear we have like terms.
Answer:
The Proof for
△ABD ≅ △CBD is below
Step-by-step explanation:
Given:


AD = CD .........BD bisect AC
To Prove:
△ABD ≅ △CBD
Proof:
In ΔABD and ΔCBD
BD ≅ BD ....……….{Reflexive Property}
∠ADB ≅ ∠CDB …………..{Measure of each angle is 90°(
)}
AD ≅ CD ....……….{
}
ΔABD ≅ ΔCBD .......….{By Side-Angle-Side Congruence test} ...Proved