Answer:
The value of Ka 
It is a weak acid
Explanation:
From the question we are told that
The concentration of ![[HClO_2]=0.24M](https://tex.z-dn.net/?f=%5BHClO_2%5D%3D0.24M)
The concentration of ![[H^+]=0.051M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.051M)
The concentration of ![[ClO_2^-]=0.051M](https://tex.z-dn.net/?f=%5BClO_2%5E-%5D%3D0.051M)
Generally the equation for the ionic dissociation of
is

The equilibrium constant is mathematically represented as

![= \frac{[H^+][ClO_2^-]}{[HClO_2]}](https://tex.z-dn.net/?f=%3D%20%5Cfrac%7B%5BH%5E%2B%5D%5BClO_2%5E-%5D%7D%7B%5BHClO_2%5D%7D)
Substituting values since all value of concentration are at equilibrium


Since the value of is less than 1 it show that in water it dose not completely
disassociated so it an acid that is weak
Answer:

Explanation:
First reaction gives you the number of moles or the mass from Carbon and hydrogen
for carbon:


Analogously for hydrogen:
0.0310g
have 0.0034gH or 0.0034mol of H
In the second reaction you can obtain the amount of nitrogen as a percentage and find the mass of N in the first sample.

now

this is equivalet to 0.002mol of N
with this information you can find the mass of oxygen by matter conservation.

this is equivalent to 0.004molO
finally you divide all moles obtained between the smaller number of mole (this is mol of H)

and you can multiply by 5 to obtain: 
Answer:
The red blood cells will burst
Explanation:
When the red blood cells are placed in pure water, they will gain water by osmosis, swell and finally burst due to their weak cell membranes. This process is referred to as hemolysis.
Answer:
A. Energy must be conserved in a nuclear reaction
Explanation: