Answer:
Explanation:
Using freezing point depression formula,
ΔTemp.f = Kf * b * i
Where,
ΔTemp.f = temp.f(pure solvent) - temp.f(solution)
b = molality
i = van't Hoff factor
Kf = cryoscopic constant
= 1.86°C/m for water
= (0 - (-5.58))/1.86
= 3.00 mol/kg
Assume 1 kg of water(solvent)
= (3.00 x 1)
= 3.00 mol.
Yes ...................................
Answer:
<u>The Answer is (B) A car get rusty over the course of few years</u>Explanation:
<u>Explanation:</u>
- <u>Oxidation </u>refers to the process of loss of electrons by a molecule,atom or ion during a chemical reaction.The process which is just the opposite of oxidation is reduction,it occurs when their is gain of electrons .
- <u>When iron reacts with the oxygen it forms a chemical know as Rust.In this case iron has lost some electrons and the oxygen has gained some electrons</u>
<u></u>
your answer is <u>B. Arrhenius base</u>
<h3>Answer:</h3>
Strontium (Sr)
<h3>Explanation:</h3>
The condition given in statement is the presence of two valence electron. Hence, first we found the electronic configuration of given atoms as follow;
Rubidium [Kr] 5s¹
Strontium [Kr] 5s²
Zirconium [Kr] 4d² 5s²
Silver [Kr] 4d¹⁰ 5s¹
From above configurations it is cleared that only Strontium and Zirconium has two electrons in its valence shell.
We also know that s-block elements are more reactive than transition elements due to less shielding effect in transition elements hence, making it difficult for transition metals to loose electrons as compared to s-block elements. Therefore, we can conclude that Strontium present in s-block with two valence electrons is the correct answer.