1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marta [7]
3 years ago
12

Solve and check please help ty

Mathematics
1 answer:
raketka [301]3 years ago
5 0

so wt's the question of this pic?

You might be interested in
Find the equation of the line that is perpendicular to y = –2x + 5 and contains the point
ivann1987 [24]

The given equation is: y+2x=5

To find the line perpendicular to it, we interchange coefficients and switch the signs of one coefficient.

The equation to a line perpendicular to it is:

$ 2y-x=c$

where, $c$ is some constant we have determine using the condition given.

It passes through $(2,-1)$

Put the point in our equation:

$2(-1)-(2)=c$

$c=-2-2$

$c=-4$

The final equation is:

$\boxed{ 2y-x=-4}$

4 0
3 years ago
HELP!!!!!!!Choose the graph that matches the following system of equations:
PolarNik [594]
The last one. And I did answer for you too.

4 0
3 years ago
Could an average person lift the weight of​ $100 in​ dimes?
kolezko [41]
Yes. it would be only about 5 pounds
6 0
3 years ago
Read 2 more answers
<img src="https://tex.z-dn.net/?f=%5Csf%20%5Clim_%7Bx%20%5Cto%20%5Cinfty%7D%20%5Ccfrac%7B%5Csqrt%7Bx-1%7D-2x%20%7D%7Bx-7%7D" id=
BARSIC [14]
<h3>Answer:  -2</h3>

======================================================

Work Shown:

\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{x-1}-2x }{ x-7 }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \frac{1}{x}\left(\sqrt{x-1}-2x\right) }{ \frac{1}{x}\left(x-7\right) }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \frac{1}{x}*\sqrt{x-1}-\frac{1}{x}*2x }{ \frac{1}{x}*x-\frac{1}{x}*7 }\\\\\\

\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{\frac{1}{x^2}}*\sqrt{x-1}-2 }{ 1-\frac{7}{x} }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{\frac{1}{x^2}*(x-1)}-2 }{ 1-\frac{7}{x} }\\\\\\\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{\frac{1}{x}-\frac{1}{x^2}}-2 }{ 1-\frac{7}{x} }\\\\\\\displaystyle L = \frac{ \sqrt{0-0}-2 }{ 1-0 }\\\\\\\displaystyle L = \frac{-2}{1}\\\\\\\displaystyle L = -2\\\\\\

-------------------

Explanation:

In the second step, I multiplied top and bottom by 1/x. This divides every term by x. Doing this leaves us with various inner fractions that have the variable in the denominator. Those inner fractions approach 0 as x approaches infinity.

I'm using the rule that

\displaystyle \lim_{x\to\infty} \frac{1}{x^k} = 0\\\\\\

where k is some positive real number constant.

Using that rule will simplify the expression greatly to leave us with -2/1 or simply -2 as the answer.

In a sense, the leading terms of the numerator and denominator are -2x and x respectively. They are the largest terms for each, so to speak. As x gets larger, the influence that -2x and x have will greatly diminish the influence of the other terms.

This effectively means,

\displaystyle L = \lim_{x\to\infty} \frac{ \sqrt{x-1}-2x }{ x-7 } = \lim_{x\to\infty} \frac{ -2x }{ x} = -2\\\\\\

I recommend making a table of values to see what's going on. Or you can graph the given function to see that it slowly approaches y = -2. Keep in mind that it won't actually reach y = -2 itself.

5 0
3 years ago
If rectangle is 12 inches long and 8 inches wide, what is the ratio of its length to its width?help
Kamila [148]
12:8
or you can simplify it to
3:2
3 0
3 years ago
Other questions:
  • Yall Help please if you can
    7·1 answer
  • The area of the kite is 48cm squared what are the lengths of the diagonals
    7·1 answer
  • NEED HELP ASAP it's math variables
    12·1 answer
  • Find the diagonal of the rectangular solid with the given measures.
    9·1 answer
  • The quality control team of a company checked 800 digital cameras for defects. The team found that 20 cameras had lens defects,
    15·1 answer
  • I am just completely lost and am unsure of how to approach this problem.
    15·1 answer
  • A customer at least lunches can choose a protein from chicken beef or shrimp the customer can also choose from right or brown ri
    8·1 answer
  • QUICK HELP!! If two linear equations have one solution, then the...
    6·1 answer
  • Pls help me!<br><br>Find f(1)​
    10·1 answer
  • What is 70 cm as a fraction of 2.1m
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!