The given equation is: 
To find the line perpendicular to it, we interchange coefficients and switch the signs of one coefficient.
The equation to a line perpendicular to it is:
$ 2y-x=c$
where, $c$ is some constant we have determine using the condition given.
It passes through $(2,-1)$
Put the point in our equation:
$2(-1)-(2)=c$
$c=-2-2$
$c=-4$
The final equation is:
$\boxed{ 2y-x=-4}$
The last one. And I did answer for you too.
Yes. it would be only about 5 pounds
<h3>
Answer: -2</h3>
======================================================
Work Shown:


-------------------
Explanation:
In the second step, I multiplied top and bottom by 1/x. This divides every term by x. Doing this leaves us with various inner fractions that have the variable in the denominator. Those inner fractions approach 0 as x approaches infinity.
I'm using the rule that

where k is some positive real number constant.
Using that rule will simplify the expression greatly to leave us with -2/1 or simply -2 as the answer.
In a sense, the leading terms of the numerator and denominator are -2x and x respectively. They are the largest terms for each, so to speak. As x gets larger, the influence that -2x and x have will greatly diminish the influence of the other terms.
This effectively means,

I recommend making a table of values to see what's going on. Or you can graph the given function to see that it slowly approaches y = -2. Keep in mind that it won't actually reach y = -2 itself.
12:8
or you can simplify it to
3:2