Answer:

Explanation:
If the weight is a linear function of the amount of fuel, the following correlation is fulfilled :

we solve the equation:

The answer is b.) the momentum before the collision is greater than the momentum after the collision
Answer:A block rests on a horizontal, frictionless surface. A string is attached to the block, and is pulled with a force of 45.0 N at an…
Explanation:
Answer:
a) 
b) 
c) 
d) Displacement = 22 m
e) Average speed = 11 m/s
Explanation:
a)
Notice that the acceleration is the derivative of the velocity function, which in this case, being a straight line is constant everywhere, and which can be calculated as:

Therefore, acceleration is 
b) the functional expression for this line of slope 4 that passes through a y-intercept at (0, 3) is given by:

c) Since we know the general formula for the velocity, now we can estimate it at any value for 't", for example for the requested t = 1 second:

d) The displacement between times t = 1 sec, and t = 3 seconds is given by the area under the velocity curve between these two time values. Since we have a simple trapezoid, we can calculate it directly using geometry and evaluating V(3) (we already know V(1)):
Displacement = 
e) Recall that the average of a function between two values is the integral (area under the curve) divided by the length of the interval:
Average velocity = 
Answer:
<em>13.54 tons</em>
Explanation:
Let f be the amount of fuel oxidizer needed
v be the speed
The relationship between them is inverse in nature i.e
f ∝ 1/v
f = k/v
If a rocket for use in deep space is to have the capability of boosting a total load (payload plus the rocket frame and engine) of 3.25 metric tons to a speed of 10,000 m/s, then f = 3.25 when v = 10,000
Substitute and get k
k = fv
k = 3.25 * 10,000
k = 32500
To get the amount of fuel oxidizer required to produce a speed of 2400m/s, we will find f when v = 2400m/s
Recall that f = k/v
f = 32500/2400
f = 13.54 metric tons
<em>Hence the fuel plus oxidizer that will be required is 13.54 tons</em>