Answer:
Speed of the satellite V = 6.991 × 10³ m/s
Explanation:
Given:
Force F = 3,000N
Mass of satellite m = 500 kg
Mass of earth M = 5.97 × 10²⁴
Gravitational force G = 6.67 × 10⁻¹¹
Find:
Speed of the satellite.
Computation:
Radius r = √[GMm / F]
Radius r = √[(6.67 × 10⁻¹¹ )(5.97 × 10²⁴)(500) / (3,000)
Radius r = 8.146 × 10⁶ m
Speed of the satellite V = √rF / m
Speed of the satellite V = √(8.146 × 10⁶)(3,000) / 500
Speed of the satellite V = 6.991 × 10³ m/s
Gradually slow down to a safe speed well before entering the curve.
Complete Question:
In the same configuration of the previous problem 3, four long straight wires are perpendicular to the page, and their cross sections form a square of edge length a = 13.5 cm. Each wire carries 7.50 A, and the currents are out of the page in wires 1 and 4 and into the page in wires 2 and 3.
a) Draw a diagram in a (x,y) plane of the four wires with wire 4 perpendicular to the origin. Indicate the current's directions.
b) Draw a diagram of all magnetic fields produced at the position of wire 3 by the other three currents.
c) Draw a diagram of all magnetic forces produced at the position of wire 3 by the other three currents.
d) What are magnitude and direction of the net magnetic force per meter of wire length on wire 3?
Answer:
force, 1.318 ₓ 10⁻⁴
direction, 18.435°
Explanation:
The attached file gives a breakdown step by step solution to the questions
We apply the gravity calculation expressed in the formula: g=GM/r2
where G is the gravitational constant, m is the mass and r is the radius
r=√GM/g
(1) Radius = √6.674e-11*5.972e24/8 = 7058 kms Earth radius or surface of earth from center of earth= 6400 kmsSo r= 658 kms from surface of earth.
Gravity 8m/s2 will be at 658 kms from surface of earth.
(2) half gravity= 9.8/2= 4.9 m/s2 Radius=√6.674e-11*5.972e24/4.9 = 9019 kms Half Gravity will exist at 9019-6400= 2619 kms from surface of earth.
Answer:
Explanation:
Suppose v is the initial velocity and
is the angle of inclination
distance traveled in vertical direction in t=1 s
When gravity is present

where 



here initial velocity is v\sin \theta [/tex] so


In absence of gravity


