The Period of the resulting shm will be T=39.7
<u>Explanation:</u>
<u>Given data</u>
m=3kg
d=.06m
k=1200 N/m
Θ=3 °
T=?
we have the formulas,
I = (1/6)Md2
F = ma
F = -kx = -(mω2x)
k = mω2 τ = -d(FgsinΘ)
T=2 x 3.14/ √(m/k)
Solution for the given problem would be,
F=-Kx (where x= dsin Θ)
F=-k dsin Θ
F=-(1200)(.06)sin(3 °)
F=-10.16N
<u>By newton's second law.</u>
F = ma
a= F/m
a=(-10.16N)/3
a=3.38
<u>using the k=mω value</u>
k=mω
ω=k/m
ω=1200/3
ω=400
<u>Using F = -kx value</u>
x = F/-k
x=(-10.16)/1200
x=0.00847m
<u>Restoring the torque value </u>
τ = -dmgsinΘ where( τ = Iα so.).. Iα = -dmgsinΘ α = -(.06)(4)α =
α =(.06)(4)(9.81)sin(4°)
α=-1.781
<u>Rotational to linear form</u>
a = αr
r = .1131 m
a=-1.781 x .1131 m
a=-0.2015233664
<u>Time Period</u>
T=2 x 3.14/ √(m/k)
T=6.28/√(3/1200)
T=6.28/0.158
T=39.7
Answer:
1.52 hour
Explanation:
M = 0.5 g, I = 3 A
Electrochemical equivalent of nickel
Z = 3.04 × 10^(-4) g/C
By use of Faraday's laws of electrolysis
M = Z I t
t = M / Z I
t = 0.5 / (3.04 × 10^-4 × 3)
t = 5482.45 second = 1.52 hour
Refer to the figure shown below, which is based on the given figure.
d = the horizontal distance that the projectile travels.
h = the vertical distance that the projectile travels.
Part A
From the geometry, obtain
d = X cos(α) (1a)
h = X sin(α) (1b)
The vertical and horizontal components of the launch velocity are respectively
v = v₀ sin(θ - α) (2a)
u = v₀ cos(θ - α) (2b)
If the time of flight is t, then
vt - 0.5gt² = -h
or
0.5gt² - vt - h = 0 (3a)
ut = d (3b)
Substitute (1a), (1b), (2a), (2b) (3b) into (3a) to obtain

![4.9[ \frac{X cos \alpha }{v_{0} cos(\theta - \alpha } ]^{2} - v_{0} sin(\theta - \alpha ) [ \frac{X cos \alpha }{v_{0} cos(\theta - \alpha } ] - X sin \alpha = 0](https://tex.z-dn.net/?f=4.9%5B%20%5Cfrac%7BX%20cos%20%5Calpha%20%7D%7Bv_%7B0%7D%20cos%28%5Ctheta%20-%20%20%5Calpha%20%7D%20%20%5D%5E%7B2%7D%20-%20v_%7B0%7D%20sin%28%5Ctheta%20-%20%20%5Calpha%20%29%20%5B%20%5Cfrac%7BX%20cos%20%5Calpha%20%7D%7Bv_%7B0%7D%20cos%28%5Ctheta%20-%20%20%5Calpha%20%7D%20%5D%20-%20X%20sin%20%5Calpha%20%20%3D%200)
Hence obtain
![aX^{2}-bX=0 \\ where \\ a=4.9[ \frac{cos \alpha }{v_{0} cos(\theta - \alpha )}]^{2} \\ b = cos \alpha \, tan(\theta - \alpha ) + sin \alpha](https://tex.z-dn.net/?f=aX%5E%7B2%7D-bX%3D0%20%5C%5C%20where%20%5C%5C%20a%3D4.9%5B%20%5Cfrac%7Bcos%20%5Calpha%20%7D%7Bv_%7B0%7D%20cos%28%5Ctheta%20-%20%20%5Calpha%20%29%7D%5D%5E%7B2%7D%20%5C%5C%20%20b%20%3D%20cos%20%5Calpha%20%5C%2C%20%20tan%28%5Ctheta%20-%20%20%5Calpha%20%29%20%2B%20sin%20%5Calpha%20)
The non-triial solution for X is

Answer:
![X= \frac{sin \alpha + cos \alpha \, tan(\theta - \alpha )}{4.9 [ \frac{cos \alpha }{v_{0} \, cos(\theta - \alpha )} ]^{2}}](https://tex.z-dn.net/?f=X%3D%20%5Cfrac%7Bsin%20%5Calpha%20%20%2B%20cos%20%5Calpha%20%20%5C%2C%20tan%28%5Ctheta%20-%20%20%5Calpha%20%29%7D%7B4.9%20%5B%20%5Cfrac%7Bcos%20%5Calpha%20%7D%7Bv_%7B0%7D%20%5C%2C%20cos%28%5Ctheta%20-%20%20%5Calpha%20%29%7D%20%20%5D%5E%7B2%7D%7D%20)
Part B
v₀ = 20 m/s
θ = 53°
α = 36°
sinα + cosα tan(θ-α) = 0.8351
cosα/[v₀ cos(θ-α)] = 0.0423
X = 0.8351/(4.9*0.0423²) = 101.46 m
Answer: X = 101.5 m
Sure ,Let's find angle between forces
- Vectors be A and B and resultant be R








Answer:
6.20×10⁴ V/m
Explanation:
The magnitude of electric field is:
E = √(Eₓ² + Eᵧ²)
where Eₓ = ∂φ/∂x and Eᵧ = ∂φ/∂y.
φ = 1.11 (x² + y²)^-½ − 429x
Eₓ = -0.555 (x² + y²)^-(³/₂) (2x) − 429
Eᵧ = -0.555 (x² + y²)^-(³/₂) (2y)
Evaluating at (0.003, 0.003):
Eₓ = -44034 V/m
Eᵧ = -43605 V/m
The magnitude is:
E = 61971 V/m
Rounded to three significant figures, the strength of the electric field is 6.20×10⁴ V/m.