Answer:
322 kJ
Explanation:
The work is the energy that a force produces when realizes a displacement. So, for a gas, it occurs when it expands or when it compress.
When the gas expands it realizes work, so the work is positive, when it compress, it's suffering work, so the work is negative.
For a constant pressure, the work can be calcutated by:
W = pxΔV, where W is the work, p is the pressure, and ΔV is the volume variation. To find the work in Joules, the pressure must be in Pascal (1 atm = 101325 Pa), and the volume in m³ (1 L = 0.001 m³), so:
p = 60 atm = 6.08x10⁶ Pa
ΔV = 82.0 - 29.0 = 53 L = 0.053 m³
W = 6.08x10⁶x0.053
W = 322x10³ J
W = 322 kJ
Answer:
Explanation:
006
They are acting in opposite directions. Therefore the net force is found by subtraction. The sign is the same as the larger number.
Net Force = 99.6 - 52.8 = 46.8 N acting in the same direction as the 99.6 which is upward.
008
If the two forces act in the same direction, the net force is found by addition.
Net Force = 99.6 + 52.8 = 152.4 N downward.
Answer:
A) Fb = 671.3 N
B) The diver will sink.
Explanation:
A)
The buoyant force applied on an object by a fluid is given by the following formula:
Fb = Vρg
where,
Fb = Buoyant Force = ?
V = Volume of the water displaced by the object = 68.5 L = 0.0685 m³
ρ = Density of Water = 1000 kg/m³
g = 9.8 m/s²
Therefore,
Fb = (0.0685 m³)(1000 kg/m³)(9.8 m/s²)
<u>Fb = 671.3 N</u>
B)
Now, in order to find out whether the diver sinks or float, we need to find weight of the diver with gear.
W = mg = (71.8 kg)(9.8 m/s²)
W = 703.64 N
Since, W > Fb. Therefore, the downward force of weight will make the diver sink.
<u>The diver will sink.</u>
Answer:
change in frequency is 636 Hz
Explanation:
given data
speed v1 = 36 m/s
speed v2 = 45 m/s
frequency f = 500 Hz
speed of sound s = 343 m/s
to find out
what is the change in frequency
solution
we know here change of frequency formula that is
frequency =
(f) ...................1
put here value in equation 1
and we take v2 = -45 because opposite direction
frequency =
(f)
frequency =
(500)
frequency = 636
so change in frequency is 636 Hz
Answer:
<h3>a.</h3>
- After it has traveled through 1 cm :

- After it has traveled through 2 cm :

<h3>b.</h3>
- After it has traveled through 1 cm :

- After it has traveled through 2 cm :

Explanation:
<h2>
a.</h2>
For this problem, we can use the Beer-Lambert law. For constant attenuation coefficient
the formula is:

where I is the intensity of the beam,
is the incident intensity and x is the length of the material traveled.
For our problem, after travelling 1 cm:




After travelling 2 cm:




<h2>b</h2>
The optical density od is given by:
.
So, after travelling 1 cm:




After travelling 2 cm:



