Answer:
p to the left
Explanation:
According to law of conservation of momentum "total momentum of an isolated system remains constant".
we consider astronaut and astronaut drill as an isolated system. If the drill gain momentum p to the right so in order for momentum to remain constant the astronaut will gain the same momentum but in opposite direction i.e momentum p to the left.
Initial momentum = 0 ( before she throw astronaut belt)
Final momentum = p - p = 0 (After she throw astronaut belt)
Hence momentum of the system remains constant i.e zero.
Answer:
6 m/s²
Explanation:
From the question given above, the following data were obtained:
Velocity (v) = 30 m/s
Time (t) = 5 s
Acceleration (a) =..?
Acceleration is defined mathematically as:
Acceleration (a) = Velocity (v) /time (t)
a = v /t
With the above formula, we can obtain the acceleration of the object as follow:
Velocity (v) = 30 m/s
Time (t) = 5 s
Acceleration (a) =..?
a= v/t
a= 30/5
a = 6 m/s²
Therefore, the acceleration of the object is 6 m/s² due East.
Answer:
E. Some charges in the region are positive, and some are negative.
Explanation:
Electric potential is given as;

where;
W is the work done in moving a charge between two points which have a difference in potential
Q is quantity of charge in the given region
If the electric potential at a given point in the region is zero, then sum of the charges in the given region must be equal to zero. For the charges to sum to zero, some will be positive while some will be negative,.
Therefore, the correct statement in the given options is "E"
E. Some charges in the region are positive, and some are negative.
Answer:
The increase in the internal energy of the system is 360 Joules.
Explanation:
Given that,
Heat supplied to a system, Q = 292 J
Work done on the system by its surroundings, W = 68 J
We need to find the increase in the internal energy of the system. It can be given by first law of thermodynamics. It is given by :

So, the increase in the internal energy of the system is 360 Joules. Hence, this is the required solution.