1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lubasha [3.4K]
3 years ago
11

An electron is accelerated within a particle accelerator using a 100 MV electric potential. The 100 MeV electron moves along an

evacuated tube of length 4 m, fixed to the laboratory frame.
What length of the tube would be measured by an observer moving with the electron?
Physics
1 answer:
Delicious77 [7]3 years ago
8 0

Answer:

The length of the tube is 3.92 m.

Explanation:

Given that,

Electric potential = 100 MV

Length = 4 m

Energy = 100 MeV

We need to calculate the value of \gamma

Using formula of relativistic energy

E=m_{0}c^2(\dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}}-1)

Put the value into the formula

1.6\times10^{-15}= 9.1\times`10^{-31}\times9\times10^{16}(\dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}}-1)

(\dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}}-1)=\dfrac{1.6\times10^{-15}}{9.1\times10^{-31}\times9\times10^{16}}

Here, \gamma-1=(\dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}}-1)

\gamma-1=0.01953

\gamma=0.01953+1

\gamma=1.01953

We need to calculate the length

Using formula of length

L'=\dfrac{L}{\gamma}

Put the value into the formula

L'=\dfrac{4}{1.01953}

L'=3.92\ m

Hence, The length of the tube is 3.92 m.

You might be interested in
The aim of the newton's first law experiment ​
Semmy [17]

Answer:

Application of Newton's first law of motion

A body in motion will continue in motion in a straight line unless acted upon by an outside force.

Explanation:

4 0
3 years ago
1. 1. are the charged parts of an atom.
victus00 [196]

Answer:

» e. Electrons and protons

Explaination :

Electrons are negatively charged and protons are positively charged.

  • The neutrons do not have a charge.
5 0
3 years ago
Read 2 more answers
If
nadya68 [22]

Answer:

hhjjkkkksksksjskkskakakkskskksksksoao

Explanation:

hiiii look forward but I don't know how to do it

8 0
3 years ago
Two astronauts are floating close to each other in space. Can they talk to each other without using any special device? plsss he
storchak [24]

Answer:

no they can't talk to each other bcoz of the lack of atmosphere.

Explanation:

l hope it helps you

5 0
3 years ago
A circular ring with area 4.45 cm2 is carrying a current of 13.5 A. The ring, initially at rest, is immersed in a region of unif
Gwar [14]

Answer:

a) ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ ) N.m

b) ΔU = -0.000747871 J

c)  w = 47.97 rad / s

Explanation:

Given:-

- The area of the circular ring, A = 4.45 cm^2

- The current carried by circular ring, I = 13.5 Amps

- The magnetic field strength, vec ( B ) = (1.05×10−2T).(12i^+3j^−4k^)

- The magnetic moment initial orientation, vec ( μi ) = μ.(−0.8i^+0.6j^)  

- The magnetic moment final orientation, vec ( μf ) = -μ k^

- The inertia of ring, T = 6.50×10^−7 kg⋅m2

Solution:-

- First we will determine the magnitude of magnetic moment ( μ ) from the following relation:

                    μ = N*I*A

Where,

           N: The number of turns

           I : Current in coil

           A: the cross sectional area of coil

- Use the given values and determine the magnitude ( μ ) for a single coil i.e ( N = 1 ):

                    μ = 1*( 13.5 ) * ( 4.45 / 100^2 )

                    μ = 0.0060075 A-m^2

- From definition the torque on the ring is the determined from cross product of the magnetic moment vec ( μ ) and magnetic field strength vec ( B ). The torque on the ring in initial position:

             vec ( τi ) = vec ( μi ) x vec ( B )

              = 0.0060075*( -0.8 i^ + 0.6 j^ ) x 0.0105*( 12 i^ + 3 j^ -4 k^ )

              = ( -0.004806 i^ + 0.0036045 j^ ) x ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

- Perform cross product:

          \left[\begin{array}{ccc}i&j&k\\-0.004806&0.0036045&0\\0.126&0.0315&-0.042\end{array}\right]  = \left[\begin{array}{ccc}-0.00015139\\-0.00020185\\-0.00060556\end{array}\right] \\\\

- The initial torque ( τi ) is written as follows:

           vec ( τi ) = ( 0.0015139 i^ + 0.0020185 j^ + 0.00060556 k^ )

           

- The magnetic potential energy ( U ) is the dot product of magnetic moment vec ( μ ) and magnetic field strength vec ( B ):

- The initial potential energy stored in the circular ring ( Ui ) is:

          Ui = - vec ( μi ) . vec ( B )

          Ui =- ( -0.004806 i^ + 0.0036045 j^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Ui = -[( -0.004806*0.126 ) + ( 0.0036045*0.0315 ) + ( 0*-0.042 )]

          Ui = - [(-0.000605556 + 0.00011)]

          Ui = 0.000495556 J

- The final potential energy stored in the circular ring ( Uf ) is determined in the similar manner after the ring is rotated by 90 degrees with a new magnetic moment orientation ( μf ) :

          Uf = - vec ( μf ) . vec ( B )

          Uf = - ( -0.0060075 k^ ) . ( 0.126 i^ + 0.0315 j^ -0.042 k^ )

          Uf = - [( 0*0.126 ) + ( 0*0.0315 ) + ( -0.0060075*-0.042 ) ]

          Uf = -0.000252315 J

- The decrease in magnetic potential energy of the ring is arithmetically determined:

          ΔU = Uf - Ui

          ΔU = -0.000252315 - 0.000495556  

          ΔU = -0.000747871 J

Answer: There was a decrease of ΔU = -0.000747871 J of potential energy stored in the ring.

- We will consider the system to be isolated from any fictitious forces and gravitational effects are negligible on the current carrying ring.

- The conservation of magnetic potential ( U ) energy in the form of Kinetic energy ( Ek ) is valid for the given application:

                Ui + Eki = Uf + Ekf

Where,

             Eki : The initial kinetic energy ( initially at rest ) = 0

             Ekf : The final kinetic energy at second position

- The loss in potential energy stored is due to the conversion of potential energy into rotational kinetic energy of current carrying ring.    

               -ΔU = Ekf

                0.5*T*w^2 = -ΔU

                w^2 = -ΔU*2 / T

Where,

                w: The angular speed at second position

               w = √(0.000747871*2 / 6.50×10^−7)

              w = 47.97 rad / s

6 0
3 years ago
Other questions:
  • What equation would you use to find the time taken for an object to travel a set distance?
    13·1 answer
  • If you ignore air resistance after an initial force launches a projectile, name all forces acting on it as it moves through the
    14·1 answer
  • A (blank) is a point on a standing wave that appears to be stationary
    6·1 answer
  • A ladder is leaning against a vertical wall, and both ends of the ladder are at the point of slipping. The coefficient of fricti
    8·1 answer
  • You are lying on a beach, your eyes 20cm above the sand. Just as the Sun sets, fully disappearing over the horizon, you immediat
    6·1 answer
  • The earth rotates once per day about an axis passing through the north and south poles. True or False
    5·1 answer
  • The electric flux through a square-shaped area of side 5 cm near a large charged sheet is found to be 3 × 10−5 N · m2 /C when th
    11·1 answer
  • The length of a rope is 5 m. A standing wave on the rope has four nodes. what is the wavelength of the wave
    9·1 answer
  • A 75 kg refrigerator is located on the 70th floor of skyscraper (300 meters above ground). What is the potential energy of the r
    10·2 answers
  • Important!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!