Answer:
A)
,
, 
A = 1.5×
, A = 1.9×
, A=1.5×
B) 4.469
Explanation:
From Arrhenius equation

where; K = Rate of constant
A = Pre exponetial factor
= Activation Energy
R = Universal constant
T = Temperature in Kelvin
Given parameters:




taking logarithm on both sides of the equation we have;

since we have the rate of two different temperature the equation can be derived as:


= 19846.04×7.544×
= 1.497
=
= 4.469
We know that each millimeter contains 10⁻³ meters. Writing this as a ratio:
1 mm : 10⁻³ m
We require a conversion from m³ to mm³, so we must take the cube of the ratio we have made:
1 mm³ = (10⁻³)³ m³
Therefore, the conversion used will be:
(1 mm / 10⁻³ m)³
When we multiply by this conversion, we will get:
32 m³ = 32 x 10⁹ mm³
Answer:
1.
Since both components of these solutions have the same molar mass, mole fractions would be the same as mass fractions.
0.110 atm = (2/3)(Pi) + (1/3)(Pn) [1]
0.089 atm = (1/3)(Pi) + (2/3)(Pn) [2]
2*[1] - [2]:
(2)(0.110) - 0.089 atm = Pi
Pi = 0.131 atm
2*[2] - [1]:
(2)(0.089) - 0.110 atm = Pn
Pn = 0.068 atm
2.
The hydroxyl (-OH) group on the end of a longer 1-propanol molecule makes it more polar than IPA. It follows that the intermolecular forces between 1-propanol are stronger than those of IPA and thus the vapor pressure of 1-propanol should be lower than IPA.
Explanation:
The orbitals closest to the nucleus is the orbital wih the lowest energy. This is according to the basic rules stating that the energy of the shells as its principal quantum number increases, also increases. Thus the answer in 1 is B. Valence electrons are found in the outermost electron shell, on the other hand.