The CH4 molecule has the lowest molecular weight, so it has the lowest boiling point.
Hope I helped :)
Answer:
a)
⇒
⇒
b)
⇒
⇒
Explanation:
A)
Remember that positive number superscripts mean electrons lack and negative numbers mean electrons 'excess' (if we compare it with the neutral element). So, for the case of Fe2+ which is converted to Fe3+, we know that in Fe2+ there is a two electrons lack, while in Fe3+ there is a 3 electrons lack; it means that Fe2+ was converted to Fe3+ but releasing one electron:
⇒
The same analysis is applied to Br2; Br2 is a molecule which is said to have a zero superscript because it is an apolar covalent bond; and it is converted to Br-, which, according to what I wrote above, means that there is a one electron excess. So, Br2 must have received an electron in order to change to Br-; but Br2 can't change to Br- as simple as that because Br2 is a molecule, not an atom; it is a molecule that has two Br atoms, so, Br2 must give two Br- ions as products, but receiving one electron for each one:
⇒
b)
Applying the same, in Mg2+ there is a 2 electrons lack, and in Mg is not electron lack (its superscript is zero), so Mg must have released two electrons in order to change to Mg2+:
⇒
Cr3+ has a 3 electrons lack, and Cr2+ a two electrons one, so, Cr3+ must receive an electron to convert to Cr2+:
⇒
Answer:
The correct answer is 8.79 × 10⁻² M.
Explanation:
Based on the given information, the mass of NaI given is 4.11 grams. The molecular mass of NaI is 149.89 gram per mole. The moles of NaI can be determined by using the formula,
No. of moles of NaI = Weight of NaI/ Molecular mass
= 4.11 / 149.89
= 0.027420
The vol. of the solution given is 312 ml or 0.312 L
The molarity can be determined by using the formula,
Molarity = No. of moles/ Volume of the solution in L
= 0.027420/0.312
= 0.0879 M or 8.79 × 10⁻² M
Answer:
31.7 °C
Explanation:
Charles law states that for volume of a gas is directly proportional to the absolute temperature for a fixed amount of gas at constant pressure
we can use the following equation
V1/T1 = V2/T2
where V1 is volume and T1 is temperature at first instance
V2 is volume and T2 is temperature at second instance
temperature should be in kelvin scale
T1 - 0 °C + 273 = 273 K
substituting the values in the equation
22.4 L / 273 K = 25.0 L / T2
T2 = 304.7 K
temperature in celcius is - 304.7 K - 273 = 31.7 °C
the gas must be 31.7 °C to reach a volume of 25.0 L
Answer:
the maximum extent of a vibration or oscillation, measured from the position of equilibrium.
Explanation:physics