For this problem, we should use the Henry's Law formula which is written below:
P = kC
where
P is the partial pressure of the gas
k is the Henry's Law constant at a certain temperature
C is the concentration
Substituting the values,
1.71 atm = (7.9×10⁻⁴<span> /atm)C
Solving for C,
C = 2164.56 molal or 2164.56 mol/kgwater
Let's make use of density of water (</span>1 kg/1 m³) and the molar mass of NF₃ (71 g/mol).<span>
Mass of NF</span>₃ = 2164.56 mol/kg water * 1 kg/1 m³ * 1 m³/1000000 mL * 150 mL * 71 g/mol = 23.05 g
Answer:
See attached picture.
Explanation:
Hello,
In this case, on the attached picture you will find the required line structures for the cis and trans configurations of the given compound (2-pentene). Take into account for the cis that the adjacent carbons to those having the double bond remain in the same plane, whereas for the trans one, the adjacent carbons remain in a different plane.
Regards-
We use the following formula for calculating the density:
p = m/v
Where:
m = mass
v = volume
So, we have:
p = 46 /5
p = 9,2 g/cm³