Explanation:
b. What useful functions do oxidation numbers serve?
It is used to show oxidation and reduction (loss and gain of electrons)
b. How many molecules are in 1 mole of molecules?
1 mole = 6.022 * 10^23 molecules
c. What is the name given to the number of molecules in 1 mole?
Avogadro's Number of molecules
21. a. What is the molar mass of an element?
This is the mass of an element divided by the number of moles.
Molar mass = Mass / Number of moles
b. Write the molar mass rounded to two decimal places of carbon, neon, iron and uranium.
amu = Atomic Mass Unit
Carbon = 12.01 amu
Neon = 20.18 amu
Iron = 55.85 amu
Uranium = 238.03 amu
Answer:
Measuring the Volume of Solids
Rectangular prism - Multiply the measurement of the length times the width, then times the height.
Cube - Since all sides are the same measurement, it would be the measurement of any side, or edge, cubed, or a³
Explanation:
Answer:
first one is a second one is e
Explanation:
Answer:
1. See explanation below
2. Density
3. Masses
Explanation:
1. Your picture is a bit too small to see the values but maybe this will help you.
To determine the maximum maximum mass in grams that triple beam balance can measure all you have to do is add up the maximum of each beam. So all you need to do is see the value at the last notch of each beam.
However, if you are referring to the picture that is attached in the bottom: The answer would be 610g. Because the last notches of each beam are as follows:
100 g
500 g
10 g
So we add that we get 610g.
2. density can be computed using the formula:
D = M/V
where:
D = density
M = mass
V = volume
As you can see in the both figures A and B measure 20 g, this means that their masses are the same. The density of objects can be different when either their masses, or their volumes are different. So even if they have the same mass, they can have different densities because they have different volumes.
3. Force of gravitational attraction between two objects is dependent on the masses of the two objects and the distance. The larger the mass, the stronger the gravitational force of attraction. This means that they have a direct relationship. Now when it comes to distance, the further apart they are the weaker the gravitational force of attraction, or in other words, they are indirectly related.
Answer:
d = 0.93 g/cm³
Explanation:
Given data:
Mass of object = 28 g
Volume of object = 3cm×2cm×5cm
density of object = ?
Solution:
Volume of object = 3cm × 2cm ×5cm
Volume of object = 30 cm³
Density of object:
d = m/v
by putting values,
d = 28 g/ 30 cm³
d = 0.93 g/cm³