Answer:
ΔH°rxn = - 433.1 KJ/mol
Explanation:
- CH4(g) + 4Cl2(g) → CCl4(g) + 4HCl(g)
⇒ ΔH°rxn = 4ΔH°HCl(g) + ΔH°CCl4(g) - 4ΔH°Cl2(g) - ΔH°CH4(g)
∴ ΔH°Cl2(g) = 0 KJ/mol.....pure element in its reference state
∴ ΔH°CCl4(g) = - 138.7 KJ/mol
∴ ΔH°HCl(g) = - 92.3 KJ/mol
∴ ΔH°CH4(g) = - 74.8 KJ/mol
⇒ ΔH°rxn = 4(- 92.3 KJ/mol) + (- 138.7 KJ/mol) - 4(0 KJ/mol) - (- 74.8 KJ/mol)
⇒ ΔH°rxn = - 369.2 KJ/mol - 138.7 KJ/mol - 0 KJ/mol + 74.8 KJ/mol
⇒ ΔH°rxn = - 433.1 KJ/mol
Answer:
volume of gas = 9.1436cm³
Explanation:
We will only temperature from °C to K since the conversion is done by the addition of 273 to the Celsius value.
Its not necessary to convert pressure and volume as their conversions are done by multiplication and upon division using the combined gas equation, the factors used in their conversions will cancel out.
V1 =10.1cm³ , P1 =746mmHg, T1=23°C =23+273=296k
V2 =? , P2 =760mmmHg , T2=0°C = 0+273 =273K
Using the combined gas equation to calculate for V2;


V2=9.1436cm³
Water. The energy from the fission reaction is used to heat water. The water vaporizes which causes pressure rise. The pressure is used to drive a turbine which runs a generator.
I hope this helps.
They tend to form ionic bonds by losing electrons.
The number of protons in an atom can be determined by the element's atomic number, and the number of electrons can be determined by subtracting by atomic mass by the atomic number.