In 1917, Rutherford discovered something new, he bombarded alpha particles on nitrogen gas and noticed that occasionally an oxygen atom is produced. From this he concluded that the alpha particles removes proton from the nucleus (positively charged particle). He named this playing with marbles and he become the first one to split an atom. Thus, by bombarding nitrogen with alpha particles, he observed the production of oxygen, a different element.
Therefore, he said bombarding atoms with particles is similar to playing with marbles.
Explanation:
1) Initial mass of the Cesium-137=
= 180 mg
Mass of Cesium after time t = N
Formula used :
Half life of the cesium-137 =
= initial mass of isotope
N = mass of the parent isotope left after the time, (t)
= half life of the isotope
= rate constant

Now put all the given values in this formula, we get
Mass that remains after t years.

Therefore, the parent isotope remain after one half life will be, 100 grams.
2)
t = 70 years


N = 35.73 mg
35.73 mg of cesium-137 will remain after 70 years.
3)


N = 1 mg
t = ?

t = 224.80 years ≈ 225 years
After 225 years only 1 mg of cesium-137 will remain.
Answer:
1 M
Explanation:
The molarity of a solution, M, is a measure of the concentration of that solution and it refers to the number of moles of solute (mol) per liter (L) of solution. The molarity (M) can be calculated using the formula:
M = number of moles (n) /volume (V)
In this question, a 500 ml aqueous solution of Na3PO4 was prepared using 82g of the solute.
Molar mass of Na3PO4 = 23(3) + 15 + 16(4)
= 69 + 31 + 64
= 164g/mol
Mole = mass/molar mass
mole = 82/164
mole = 0.5 mol
Volume in Litres (L) = 500 ml ÷ 1000 = 0.500L
Therefore, Molarity (M) = 0.5/0.500
Molarity = 1 M or 1 mol/L
The force upon a moving object