The question is incomplete, here is the complete question:
A chemist measures the amount of bromine liquid produced during an experiment. She finds that 766.g of bromine liquid is produced. Calculate the number of moles of bromine liquid produced. Round your answer to 3 significant digits.
<u>Answer:</u> The amount of liquid bromine produced is 4.79 moles.
<u>Explanation:</u>
To calculate the number of moles, we use the equation:
![\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%20moles%7D%3D%5Cfrac%7B%5Ctext%7BGiven%20mass%7D%7D%7B%5Ctext%7BMolar%20mass%7D%7D)
We are given:
Given mass of liquid bromine = 766. g
Molar mass of liquid bromine,
= 159.8 g/mol
Putting values in above equation, we get:
![\text{Moles of liquid bromine}=\frac{766.g}{159.8g/mol}=4.79mol](https://tex.z-dn.net/?f=%5Ctext%7BMoles%20of%20liquid%20bromine%7D%3D%5Cfrac%7B766.g%7D%7B159.8g%2Fmol%7D%3D4.79mol)
Hence, the amount of liquid bromine produced is 4.79 moles.
Answer:
Water would not be able to transport nutrients -‐-‐ in plants, or in our bodies -‐-‐ nor to dissolve and transport waste products out of our bodies. ... Cohesiveness, adhesiveness, and surface tension: would decrease because without the +/-‐ polarity, water would not form hydrogen bonds between H20 molecules.
Answer:
22 mol
Explanation:
Given data:
Number of atoms of Cl = 2.65×10²⁵ atom
Number of moles of Cl = ?
Solution:
The given problem will solve by using Avogadro number.
It is the number of atoms , ions and molecules in one gram atom of element, one gram molecules of compound and one gram ions of a substance. The number 6.022 × 10²³ is called Avogadro number.
1 mole = 6.022 × 10²³ atoms
2.65×10²⁵ atom × 1 mol / 6.022 × 10²³ atoms
0.44×10² mol
22 mol
Answer:
Then, at some point, these higher energy electrons give up their "extra" energy in the form of a photon of light, and fall back down to their original energy level.
Explanation:
When properly stimulated, electrons in these materials move from a lower level of energy up to a higher level of energy and occupy a different orbital.