<em>B</em><em> </em><em>i</em><em>s</em><em> </em><em>r</em><em>i</em><em>g</em><em>h</em><em>t</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>i</em><em>t</em><em>h</em><em>i</em><em>n</em><em>k</em><em> </em><em>b</em><em>r</em><em>o</em><em>/</em><em>s</em><em>i</em><em>s</em>
Answer:

Explanation:
10.11 g sample of
contains 22.34%
by mass
According to the law of constant composition the if one sample of
has 22.34% of
by mass then any other sample of
will have the same percentage of the amount of
.
For a sample of 7.09 g we have

The mass of sodium in the required sample is
.
Answer:
The given molecules are:
a. C6H13NH2
b. CH3OH
c. CH4
d. C5H11OH
e. CO2
Explanation:
The hydrogen bond is a weak electrostatic force of attarction that exists between covalently bonded hydrogen (of -OH or -NH2 or HF) with a highly electronegative atom like N,O and F.
Hydrogen bonding is of two types:
Intermolecular hydrogen bond (exists between two molecules)
Intramolecular hydrogen bond(exists within a molecule).
For example intermolecular hydrogen bond in water is shown below:
Among the given options,
a. C6H13NH2 has -NH2 linkage which leads to hydrogen bond formation.
b. CH3OH has -OH bond and it leads to hydrogen bond fomation.
d. C5H11OH has also -OH bond and it leads to hydrogen bond fomation.
Reamining molecules, CH4 and CO2 do not form hydrogen bond.
Hence, answer is:
options a,b,d.