Answer:
The equilibrium value of [CO] is 1.04 M
Explanation:
Chemical equilibrium is the state to which a spontaneously evolving chemical system, in which a reversible chemical reaction takes place. When this situation is reached, it is observed that the concentrations of substances, both reagents and reaction products, they remain constant over time. That is, the rate of reaction of reagents to products is the same as that of products to reagents.
Reagent concentrations and products in equilibrium are related by the equilibrium constant Kc. Being:
aA + bB ⇔ cC + dD
![Kc=\frac{[C]^{c} *[D]^{d} }{[A]^{a} *[B]^{b} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BC%5D%5E%7Bc%7D%20%2A%5BD%5D%5E%7Bd%7D%20%7D%7B%5BA%5D%5E%7Ba%7D%20%2A%5BB%5D%5E%7Bb%7D%20%7D)
Then this constant Kces equals the multiplication of the concentrations of the products raised to their stoichiometric coefficients between the multiplication of the concentrations of the reactants also raised to their stoichiometric coefficients.
In this case:
![Kc=\frac{[CH_{3}OH ]}{[CO]*[H_{2} ]^{2} }](https://tex.z-dn.net/?f=Kc%3D%5Cfrac%7B%5BCH_%7B3%7DOH%20%5D%7D%7B%5BCO%5D%2A%5BH_%7B2%7D%20%5D%5E%7B2%7D%20%7D)
You know:
- Kc= 14.5
- [H₂]= 0.322 M
- [CH₃OH] =1.56 M
Replacing:
![14.5=\frac{1.56}{[CO]*0.322^{2} }](https://tex.z-dn.net/?f=14.5%3D%5Cfrac%7B1.56%7D%7B%5BCO%5D%2A0.322%5E%7B2%7D%20%7D)
Solving:
![[CO]=\frac{1.56}{14.5*0.322^{2} }](https://tex.z-dn.net/?f=%5BCO%5D%3D%5Cfrac%7B1.56%7D%7B14.5%2A0.322%5E%7B2%7D%20%7D)
[CO]= 1.04 M
The equilibrium value of [CO] is 1.04 M
Answer: -
1) 8.33 minutes
2) 118.39 in/ s
180.43 m/min
10.83 km/ hr
Explanation: -
Speed of light = 3 x 10⁸ m/s
Distance of the earth from the sun= 93 million miles
We know 1 million = 1,000,000
Also 1 mile = 1609 m
Distance of the earth from the sun= 93 million miles
= 93,000,000 miles.
= 1.5 x
m
Time taken = 
=
m}{3 x 10⁸ m/s} [/tex]
= 500 s
= 500/ 60
= 8.33 minutes
2) Distance = 1 mile = 63360 inches
Time taken = 8.92 min
= 8.92 x 60
= 535.2 s
Speed = 
= 
= 118.39 in/ s
Distance = 1 mile = 63360 inches = 63360 x 2.54 cm = 63360 x 2.54 x
m
Time taken = 8.92 min
Speed = 
=
m}{8.92 min} [/tex]
= 180.43 m/ min
1 m = 10⁻³ Km
1 min = 1/60 hour
1 m /min = 10⁻³ km/ 
= 60/1000
=0.06 km/hr
180.43 m / min = 180 x 0.06 km / hr
= 10.93 km / hr
Answer:
Mass = 2.89 g
Explanation:
Given data:
Mass of NH₄Cl = 8.939 g
Mass of Ca(OH)₂ = 7.48 g
Mass of ammonia produced = ?
Solution:
2NH₄Cl + Ca(OH)₂ → CaCl₂ + 2NH₃ + 2H₂O
Number of moles of NH₄Cl:
Number of moles = mass/molar mass
Number of moles = 8.939 g / 53.5 g/mol
Number of moles = 0.17 mol
Number of moles of Ca(OH)₂ :
Number of moles = mass/molar mass
Number of moles = 7.48 g / 74.1 g/mol
Number of moles = 0.10 mol
Now we will compare the moles of ammonia with both reactant.
NH₄Cl : NH₃
2 : 2
0.17 : 0.17
Ca(OH)₂ : NH₃
1 : 2
0.10 : 2/1×0.10 = 0.2 mol
Less number of moles of ammonia are produced by ammonium chloride it will act as limiting reactant.
Mass of ammonia:
Mass = number of moles × molar mass
Mass = 0.17 mol × 17 g/mol
Mass = 2.89 g
Answer: fourth option, 10.8 kJ
Explanation:
The <em>heat of fusion</em>, also named latent heat of fusion, is the amount of heat energy required to change the state of a substance from solid to liquid (at constant pressure).
The data of the <em>heat of fusions</em> of the substances are reported in tables and they can be shown either per mole or per gram of substance.
In this case we have that the<em> heat of fusion for water </em>is reported per mole: <em>6.02 kJ/mole</em>.
The formula to calculate <em>how many kJ of heat (total heat) are needed to completely melt 32.3 g of water, given that the water is at its melting point</em> is:
- Heat = number of moles × heat of fusion
The calculations are:
- number of moles = mass / molar mass
number of moles = 32.3 g / 18.015 g/mol = 1.79 mol
- Heat = 1.79 mol × 6.02 kJ / mol = 10.8 kJ ← answer
Answer: what the hell does that mean
Explanation: