Answer:
3.2M HCl Solution
Explanation:
Molarity = moles of solute / volume of solution expressed in liters
moles of solute = 0.80 moles HCl
volume of solution = 250 ml = 0.250 Liter
Molarity (M) = 0.80 moles HCl / 0.250 Liters = 3.2M HCl Solution
The grams of solid copper oxide must be used to prepare a solution of 0.125m concentration is 5.26 g.
According to the definition of molar concentration of a substance dissolved in a solution is defined as the ratio of the number of moles to the volume of the solution.
C = n/V
The number of moles is equal to the given mass divided by the molar mass.
n = m/Mm = n ×m
Given,
The volume of the solution of copper oxide = 0.53
Molar mass of copper oxide = 79.5
Concentration of copper oxide = 0.125
CuO = cVM
= 0.125 × 0.53 × 79.5
= 5.26g
Thus, we concluded that the grams of solid copper oxide must be used to prepare a solution of 0.125m concentration is 5.26 g.
DISCLAIMER: The above question is wrong. The correct question is
Question: In lab you have to prepare 530. 00 ml solution of 0. 125 m copper (ii) oxide. How many grams of solid copper oxide must be used to prepare a solution of this concentration?
learn more about molar concentration :
brainly.com/question/14803618
#SPJ4
Answer:
A. B. C.D.-allnswers 4 answers
Answer:
Electrons on the outermost shell of an atom. They are responsible for the chemical properties of an atom.
Answer:
T₂ = 182 K
Explanation:
Given that,
Initial pressure, P₁ = 120 kPa
Initial temperature, T₁ = 0˚C = 273 K
We need to find the final temperature when the pressure is 80 kPa.
We know that, Gay Lussac's Formula is :

So, the new temperature is equal to 182 K.