1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dovator [93]
3 years ago
9

!50 POINTS!

Mathematics
1 answer:
Strike441 [17]3 years ago
6 0

Answer:

  • A. 0

Step-by-step explanation:

<u>Given inequality:</u>

  • 6 > z(10 - z)

<u>Solution:</u>

  • 6 > 10z - z²
  • z² - 10z + 6 > 0
  • z² - 10z + 25 > 19
  • (z - 5)² > 19
  • z - 5 > √19 ⇒ z > 5 + √19 ⇒ z > 9.35
  • z - 5 < - √19 ⇒ z < 5 - √19 ⇒ z < 0.64

The only number satisfying this inequality is 0.

Correct choice is A

You might be interested in
There is a pattern (2,4) (4,6) (6,9) (8,12) what is the 8th group
kipiarov [429]
The answer is (10,17)
3 0
3 years ago
Read 2 more answers
(6x-5y+4)dy+(y-2x-1)dx=0​
Len [333]

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> + (<em>y</em> - 2<em>x</em> - 1) d<em>x</em> = 0

(6<em>x</em> - 5<em>y</em> + 4) d<em>y</em> = (2<em>x</em> - <em>y</em> + 1) d<em>x</em>

d<em>y</em>/d<em>x</em> = (2<em>x</em> - <em>y</em> + 1) / (6<em>x</em> - 5<em>y</em> + 4)

Let <em>X</em> = <em>x</em> - <em>a</em> and <em>Y</em> = <em>y</em> - <em>b</em>. We want to find constants <em>a</em> and <em>b</em> such that

d<em>Y</em>/d<em>X</em> = (a rational function)

where the numerator and denominator on the right side are free of constant terms. Substituting <em>x</em> and <em>y</em> in the equation, we have

d<em>Y</em>/d<em>X</em> = (2 (<em>X</em> + <em>a</em>) - (<em>Y</em> + <em>b</em>) + 1) / (6 (<em>X</em> + <em>a</em>) - 5 (<em>Y</em> + <em>b</em>) + 4)

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em> + 2<em>a</em> - <em>b</em> + 1) / (6<em>X</em> - 5<em>Y</em> + 6<em>a</em> - 5<em>b</em> + 4)

Then we solve for <em>a</em> and <em>b</em> in the system,

2<em>a</em> - <em>b</em> + 1 = 0

6<em>a</em> - 5<em>b</em> + 4 = 0

==>   <em>a</em> = -1/4 and <em>b</em> = 1/2

With these constants, the equation reduces to

d<em>Y</em>/d<em>X</em> = (2<em>X</em> - <em>Y</em>) / (6<em>X</em> - 5<em>Y</em>)

Now substitute <em>Y</em> = <em>VX</em> and d<em>Y</em>/d<em>X</em> = <em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> :

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2<em>X</em> - <em>VX</em>) / (6<em>X</em> - 5<em>VX</em>)

The equation becomes separable after some simplification:

<em>X</em> d<em>V</em>/d<em>X</em> + <em>V</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em>) / (6 - 5<em>V</em>) - <em>V</em>

<em>X</em> d<em>V</em>/d<em>X</em> = (2 - <em>V</em> - (6 - 5<em>V</em>)) / (6 - 5<em>V</em>)

<em>X</em> d<em>V</em>/d<em>X</em> = (4<em>V</em> - 4) / (6 - 5<em>V</em>)

- (5<em>V</em> - 6) / (4<em>V</em> - 4) d<em>V</em> = 1/<em>X</em> d<em>X</em>

Integrate both sides:

-5/4 <em>V</em> + 1/4 ln|4<em>V</em> - 4| = ln|<em>X</em>| + <em>C</em>

Extract a constant from the logarithm on the left:

-5/4 <em>V</em> + 1/4 (ln(4) + ln|<em>V</em> - 1|) = ln|<em>X</em>| + <em>C</em>

-5/4 <em>V</em> + 1/4 ln|<em>V</em> - 1| = ln|<em>X</em>| + <em>C</em>

-5<em>V</em> + ln|<em>V</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Get this back in terms of <em>Y</em> :

-5<em>Y/X</em> + ln|<em>Y/X</em> - 1| = 4 ln|<em>X</em>| + <em>C</em>

Now get the solution in terms of <em>y</em> and <em>x</em> :

-5 (<em>y</em> - 1/2)/(<em>x</em> + 1/4) + ln|(<em>y</em> - 1/2)/(<em>x</em> + 1/4) - 1| = 4 ln|<em>x</em> + 1/4| + <em>C</em>

<em />

With some manipulation of constants and logarithms, and a bit of algebra, we can rewrite this solution as

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|<em>x</em> + 1/4| + 4 ln(4) + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|(4<em>y</em> - 4<em>x</em> - 3)/(4<em>x</em> + 1)| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| - ln|4<em>x</em> + 1| = 4 ln|4<em>x</em> + 1| + <em>C</em>

-5 (4<em>y</em> - 2)/(4<em>x</em> + 1) + ln|4<em>y</em> - 4<em>x</em> - 3| = 5 ln|4<em>x</em> + 1| + <em>C</em>

8 0
3 years ago
Wilson bought fruit that weighs pounds. How many ounces does the fruit weigh? Show your work
mrs_skeptik [129]
Answer: multiply the number of pounds by 16 to get number of ounces (since there isn't a number in between weighs/pounds)
8 0
3 years ago
Find the coordinates for the midpoint of the segment with endpoints given 12,4 and -8,8
borishaifa [10]
<h2>Hello!</h2>

The answer is:

The coordinates of the midpoint are:

x-coordinate=2\\y-coordinate=6

<h2>Why?</h2>

We can find the midpoint of the segment with the given endpoints using the following formula.

The midpoint of a segment is given by:

MidPoint=(\frac{x_{1}+x_{2}}{2},\frac{y_{1}+y_{2}}{2})

We are given the points:

(12,4)\\

and

(-8,8)\\

Where,

x_{1}=12\\y_{1}=4\\x_{2}=-8\\y_{2}=8

So, calculating the midpoint, we have:

MidPoint=(\frac{12+(-8)}{2},\frac{4+8}{2})

MidPoint=(\frac{4}{2},\frac{12}{2})

MidPoint=(2,6)

Hence, we have that the coordinates of the midpoint are:

x-coordinate=2\\y-coordinate=6

Have a nice day!

8 0
3 years ago
Read 2 more answers
During a dry year, the reservoir level dropped 512 feet. The next year the level rose 314 feet. Which expression shows the total
tia_tia [17]

Answer:

You will be hot as shet

Step-by-step explanation:

e

5 0
3 years ago
Other questions:
  • How to check if a binomial is a difference of squares ?
    5·1 answer
  • Find the slope of the line that contains each of the following pairs of points. (3,-5) (0,0)
    15·1 answer
  • Answer the linear inequality
    6·1 answer
  • Edwin conducted a survey to find the percentage of people in an area who smoked regularly. He defined the label "smoking regular
    8·1 answer
  • PLEASE HELP I GIVE A DECENT AMOUNT OF POINTS !!The circumference of the outside of a ring is 66 mm, and it has an outer diameter
    13·1 answer
  • 8.<br> Find the selling price of a $450 painting with a 45%<br> markup.
    15·1 answer
  • What are the zeros of the function f(x) = x2 – 10x + 21?<br> help bro
    15·1 answer
  • Plzzzz Help what is the equation? ​
    15·1 answer
  • I need help i dont know what it means
    12·1 answer
  • Cody clams that when 1/6 is multiplied by a negative number, the result will
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!