Answer
pH=8.5414
Procedure
The Henderson–Hasselbalch equation relates the pH of a chemical solution of a weak acid to the numerical value of the acid dissociation constant, Kₐ. In this equation, [HA] and [A⁻] refer to the equilibrium concentrations of the conjugate acid-base pair used to create the buffer solution.
pH = pKa + log₁₀ ([A⁻] / [HA])
Where
pH = acidity of a buffer solution
pKa = negative logarithm of Ka
Ka =acid disassociation constant
[HA]= concentration of an acid
[A⁻]= concentration of conjugate base
First, calculate the pKa
pKa=-log₁₀(Ka)= 8.6383
Then use the equation to get the pH (in this case the acid is HBrO)
Answer:
nah but ill take points tho
Explanation:
An ionic compound is formed between a metal and a non metal. The metal being electropositive can form a cation by transferring the electron to the electronegative non metal that gains the electrons to form an anion. Both the elements try to get a stable octet configuration by the transfer of electrons. The number of electrons lost by metal will be equal to the number of electrons gained by the non metal. Hence, the magnitude of positive charge on the cation will be equal to the magnitude of negative charge on the anion. Therefore, the overall charge on the compound will be 0
So the correct answer is the sum of all charges in the formula for an ionic compound is 0
It easier to remove electrons from a large element(bottom of the periodic table) because there further away from the nucleus.