Answer:
The correct answer is that both molecular motion, pressure and temperature increase as volume reduces.
Explanation:
A reduction in volume changes the molecular motion, temperature and pressure of the system. When the volume of the container decreases, this causes the pressure to increase, the temperature to increase and the molecular motion to increase. This is because a liquid and a solid are incompressible, so by reducing the volume of a gas, the molecules increase their movement as the temperature of the system increases, which is due to the increased pressure applied to reduce the volume of the system.
Have a nice day!
Answer:
Antibiotics are strong medicines that treat bacterial infections. Antibiotics won't treat viral infections because they can't kill viruses. You'll get better when the viral infection has run its course. Common illnesses caused by bacteria are urinary tract infections, strep throat, and some pneumonia.
Explanation:
antibiotics can treat bacterial infections, such as:
Most sinus infections.
Strep throat.
Urinary tract infections.
Pneumonia.
Most ear infections (otitis media)
Nasty bacterial skin infections (impetigo)
plz mark brainliest
The branches but also the leaves do give most light which grows both ways so
Answer:
a. 2.44 nm
b. 15.33 nm²
Explanation:
a. Calculate the thickness (in nm) of the surface film
Since the volume of a teaspoon equals V = 4.93 cm³ and the area of the oil film is half an acre = 1/2 × 4046.86 m² = 2023.43 m²
The volume of the oil film, V' equals the volume of the oil in the teaspoon, V
V' = Ah where A = cross-sectional area of oil film = 2023.43 m² = 2023.43 × 10⁴ cm² and h = height of oil film
So, V' = V
Ah = V
h = V/A
= 4.93 cm³/2023.43 × 10⁴ cm²
= 0.00244 × 10⁻⁴ cm
= 2.44 × 10⁻⁷ cm
= 2.44 × 10⁻⁷ cm × 1m/100 cm
= 2.44 × 10⁻⁹ m
= 2.44 nm
b. The surface area (in nm2) occupied by an oleic acid molecule on water.
Since the height of the oil film equals the diameter of the oil molecule, and the molecule is assumed to be a sphere of radius, r. Its surface area is thus A = 4πr²
r = h/2 = 2.44 nm/2 = 1.22 nm
A = 4πr²
A = 4π(1.22 nm)²
A = 4.88π nm²
A = 15.33 nm²
Answer:
Protonated form: 96.87%
Unprotonated form: 3.13%
Explanation:
To find the percentage of protoned and unprotoned forms of salicylic acid we must use Henderson-Hasselbalch equation:
pH = pKa + log [A⁻] / [HA]
<em>Where pKa of salicylic acid is 3.49; [A⁻] is the unprotonated form and [HA]:</em>
<em />
2.0 = 3.49 + log [A⁻] / [HA]
0.03236 = [A⁻] / [HA] <em>(1)</em>
And as:
[A⁻] + [HA] = 100% <em>(2)</em>
<em></em>
Replacing (2) in (1):
0.03236 = 100 - [HA] / [HA]
0.03236 [HA] = 100 - [HA]
1.03236[HA] = 100
<h3>[HA] = 96.87%</h3>
And [A⁻]:
[A⁻] = 100 - 96.87
<h3>[A⁻] = 3.13%</h3>
<em></em>