Answer:
Rice
Explanation:
Bro just dip it in rice thatd the only way to go
Answer:
Maximum shear stress in region AB=1.04 MPa
Maximum shear stress in region BC=3.11 MPa
Explanation:
The explanation is attached in the attachments.
Answer:
E₂ / E₁ = 521.64 / 5.95 =87.67
Explanation:
Let d be the distance covered inside electric field . Lt q be the magnitude of charge.
Force under field E₁ = q E₁
acceleration = qE₁/ m
d = 1/2 a t²
d = .5 ( qE₁ / m) x 32.3²
d = 521.64 ( qE₁ / m)
Similarly for return journey,
d = .5 x ( qE₂ / m) x 3.45²
d = 5.95x( qE₂ / m)
521.64 ( qE₁ / m) = 5.95x( qE₂ / m)
E₂ / E₁ = 521.64 / 5.95 =87.67
Explanation:
In brief, electrons are negative charges and protons are positive charges. An electron is considered the smallest quantity of negative charge and a proton the smallest quantity of positive charge.
Two negative charges repel. Also, two positive charges repel. A positive charge and a negative charge attract each other (all experimentally verified.)
Point Charge: An accumulation of electric charges at a point (a tiny volume in space) is called a point charge.
Note: When an atom loses an electron, the separated electron forms a negative charge, but the remaining that contains one less electron or consequently one more proton becomes a positive charge. A positive charge is not necessarily a single proton. In most cases, a positive charge is an atom that has lost one or more electron(s).
Answer:
Puesto que la energia cinética traslacional es mucho mayor que la capacidad del chaleco antibalas, la bala atravesaría el chaleco antibalas.
Explanation:
Un chaleco antibalas soporta el disparo de una bala disipando la energía de esta última a través de su propio material. Si sabemos que el chaleco antibalas soporta 120 joules de energía, cabe saber si la energía cinética traslacional es igual o inferior a ese límite, significando que la bala no atravesaría el chaleco.
La energía cinética traslacional de la bala (
), in joules, queda expresada con la siguiente fórmula:
(1)
Donde:
- Masa de la bala, en kilogramos.
- Rapidez de la bala, en metros por segundo.
Si sabemos que
y
, entonces la energía cinética traslacional de la bala es:

Puesto que la energia cinética traslacional es mucho mayor que la capacidad del chaleco antibalas, la bala atravesaría el chaleco antibalas.