1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
3 years ago
12

A 1232 kg car moving north at 25.6 m/s collides with a 2028 kg car moving north at 17.5 m/s . They stick together. In what direc

tion and at what speed do they move after the collision?
Physics
1 answer:
Citrus2011 [14]3 years ago
6 0

Answer:

I. Angle = 41.7° Northeast.

II. Vr = 7.08m/s

Explanation:

Let the two cars be denoted by A and B

<u>Given the following data;</u>

Mass of car A = 1232 Kg

Velocity of car A = 25.6 m/s

Mass of car B = 2028 Kg

Velocity of car B = 17.5m/s

First of all, we would solve for momentum;

Momentum = mass × velocity

Momentum, M1 = 1232 × 25.6

Momentum, M1 = 31539.2 Kgm/s

Momentum, M2 = 2028 × 17.5

Momentum, M2 = 35490 Kgm/s

Now, let's find the resultant momentum using the Pythagoras theorem;

R² = M1² + M2²

R² = 31539.2² + 35490²

R² = 994721136.6 + 1259540100

R² = 2254261237

Taking the square root of both sides, we have

Resultant momentum, R = 47479.06 Kgm/s

To find the direction;

Angle = tan¯¹(M1/M2)

Angle = tan¯¹(31539.2/35490)

Angle = tan¯¹(0.89)

<em>Angle = 41.7° Northeast.</em>

To find the speed;

R = (M1 + M2)Vr

47479.06 = (31539.2 + 35490)Vr

47479.06 = 67029.2Vr

Vr = 47479.06/67029.2

<em>Vr = 7.08m/s</em>

You might be interested in
Ionic compounds have high melting points because a lot of energy is needed to break the bonds between the ions.
velikii [3]
Its true the ionic compounds have a higher melting point
5 0
4 years ago
Read 2 more answers
2. A 20 cm object is placed 10cm in front of a convex lens of focal length 5cm. Calculate
adoni [48]

Answer:

<u> </u><u>»</u><u> </u><u>Image</u><u> </u><u>distance</u><u> </u><u>:</u>

{ \tt{ \frac{1}{v}  +  \frac{1}{u} =  \frac{1}{f}  }} \\

  • v is image distance
  • u is object distance, u is 10 cm
  • f is focal length, f is 5 cm

{ \tt{ \frac{1}{v} +  \frac{1}{10} =  \frac{1}{5}   }} \\  \\  { \tt{ \frac{1}{v}  =  \frac{1}{10} }} \\  \\ { \tt{v = 10}} \\  \\ { \underline{ \underline{ \pmb{ \red{ \: image \: distance \: is \: 10 \: cm \:  \: }}}}}

<u> </u><u>»</u><u> </u><u>Magnification</u><u> </u><u>:</u>

• Let's derive this formula from the lens formula:

{ \tt{ \frac{1}{v}  +  \frac{1}{u} =  \frac{1}{f}  }} \\

» Multiply throughout by fv

{ \tt{fv( \frac{1}{v} +  \frac{1}{u} ) = fv( \frac{1}{f}  )}} \\   \\ { \tt{ \frac{fv}{v}  +  \frac{fv}{u}  =  \frac{fv}{f} }} \\  \\  { \tt{f + f( \frac{v}{u} ) = v}}

• But we know that, v/u is M

{ \tt{f + fM = v}} \\  { \tt{f(1 +M) = v }} \\ { \tt{1 +M =  \frac{v}{f}  }} \\  \\ { \boxed{ \mathfrak{formular :  } \: { \tt{ M =  \frac{v}{f}  - 1 }}}}

  • v is image distance, v is 10 cm
  • f is focal length, f is 5 cm
  • M is magnification.

{ \tt{M =  \frac{10}{5} - 1 }} \\  \\ { \tt{M = 5 - 1}} \\  \\ { \underline{ \underline{ \pmb{ \red{ \: magnification \: is \: 4}}}}}

<u> </u><u>»</u><u> </u><u>Nature</u><u> </u><u>of</u><u> </u><u>Image</u><u> </u><u>:</u>

  • Image is magnified
  • Image is erect or upright
  • Image is inverted
  • Image distance is identical to object distance.
4 0
2 years ago
When will heat transfer within a liquid stop? (25 points)
exis [7]
Choice C.
That's when convection stops.
3 0
3 years ago
How solar panels are effective for sprayers?​
vichka [17]

Answer:

Solar pesticide sprayer can give less tariff or price in effective spraying. Solar energy is absorbed by the solar panel which contains photovoltaic cells. ... This converted energy utilizes to store the voltage in the DC battery and that battery further used for driving the spray pump.

Explanation:

here is your answer Hope you will enjoy and mark me as brainlist

thank you

6 0
3 years ago
Michael is playing with two horseshoe magnets. He is trying to get them to touch, but they will not regardless of how hard he tr
Nesterboy [21]
Since like poles repel, the two horseshoe magnets have like poles facing each other, hence they repel each other and therefore they will not come in contact
8 0
3 years ago
Read 2 more answers
Other questions:
  • What are some predicted affects of climate change linked to global warming
    7·1 answer
  • A Car travel at a speed of 200 km/hr. How far it will go in 15 mins? 27.7 km 66.1 km7.70 km50.0 km8.33 km"
    15·1 answer
  • Which of the following correctly describes the relationship between speed and velocity?
    15·1 answer
  • A soccer player kicks a 0.44 kg ball with a force of 57.6 N, what is the ball’s acceleration
    14·1 answer
  • A _______ satellite records reflected wavelengths from Earth's surface
    13·2 answers
  • Which experimental result led to the inference that atoms contained electrons?
    5·2 answers
  • based on the law of conservation of energy. how can we reasonably improve a machines ability to do work? A.move the machine to a
    14·2 answers
  • What is the definition of displacement
    6·2 answers
  • You can make a solute dissolve more quickly in a solvent by
    9·1 answer
  • How can electricity produce heat and light? ​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!