1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergejj [24]
2 years ago
11

HELP PLS MARKING BRANLIST 100 Pts TAKING TEST RN

Physics
1 answer:
vredina [299]2 years ago
5 0

Answer:

0.5 m/s2

Explanation:

accelration formula : final velocty - starting velocity divided by time

You might be interested in
A box falls off of a tailgate and slides along the street for a distance of 62.5 m. Friction slows the box at –5.0 m/s2. At what
Mila [183]

Answer:

25 m/s

Explanation:

This question can be solved using equation of motion

v^2 = u^2 + 2as

where

v is the final velocity

u is the initial velocity

s is the distance covered while moving from initial to final velocity

a is the acceleration

_____________________________________________

Given

box moved for distance of 62.5 m

Friction slows the box at –5.0 m/s2----> this statement means that there is deceleration , speed of truck decreases by 5 m/s in every second until the box comes to rest. Friction causes this deceleration.

thus in this problem

a = -5.0 m/s2

V = 0   as body came to rest due to friction deceleration

u the initial velocity we have to find

the initial velocity of box will be the same as speed of truck, as the box was in the truck and hence box will pick the speed of truck.

so if we find speed of box, we will be able get sped of truck as well.

using equation of motion

v^2 = u^2 + 2as\\0^2 = u^2 + 2*-5* 62.5\\0 = u^2 - 625\\u^2 = 625\\\sqrt{u^2} = \sqrt{625} \\u = 25

Thus, initial speed with the truck was travelling was 25 m/s.

3 0
3 years ago
How many cm3 are there in 1 dm3?
Verdich [7]

The answer is in the picture.

8 0
2 years ago
A jet is travelling at a speed of 1200 km/h and drops cargo from a height of 2.5 km above the ground Calculate the time it takes
OLEGan [10]

a) Time of flight: 22.6 s

To calculate the time it takes for the cargo to reach the ground, we just consider the vertical motion of the cargo.

The vertical position at time t is given by

y(t) = h +u_y t - \frac{1}{2}gt^2

where

h = 2.5 km = 2500 m is the initial height

u_y = 0 is the initial vertical velocity of the cargo

g = 9.8 m/s^2 is the acceleration of gravity

The cargo reaches the ground when

y(t) = 0

So substituting it into the equation and solving for t, we find the time of flight of the cargo:

0 = h - \frac{1}{2}gt^2\\t=\sqrt{\frac{2h}{g}}=\sqrt{\frac{2(2500)}{9.8}}=22.6 s

b) 7.5 km

The range travelled by the cargo can be calculated by considering its horizontal motion only. In fact, the horizontal motion is a uniform motion, with constant velocity equal to the initial velocity of the jet:

v_x = 1200 km/h \cdot \frac{1000 m/km}{3600 s/h}=333.3 m/s

So the horizontal distance travelled is

d=v_x t

And if we substitute the time of flight,

t = 22.6 s

We find the range of the cargo:

d=(333.3)(22.6)=7533 m = 7.5 km

7 0
3 years ago
La tensión en newtons necesaria para que una onda transversal cuya longitud de onda es 3.33 cm vibre a razón de 625 ciclos por s
NemiM [27]

Answer:

9.34 N

Explanation:

First of all, we can calculate the speed of the wave in the string. This is given by the wave equation:

v=f \lambda

where

f is the frequency of the wave

\lambda is the wavelength

For the waves in this string we have:

f=625 Hz, since it completes 625 cycles per second

\lambda=3.33 cm = 0.033 m is the wavelength

So the speed of the wave is

v=(625)(0.0333)=20.6 m/s

The speed of the waves in a string is related to the tension in the string by

v=\sqrt{\frac{T}{\mu}} (1)

where

T is the tension in the string

\mu=\frac{m}{L} is the linear density

In this problem:

m=16.5 g = 16.5\cdot 10^{-3} kg is the mass of the string

L = 0.75 m is the its length

Solving the equation (1) for T, we find the tension:

T=\mu v^2 = \frac{m}{L} v^2 = \frac{16.5\cdot 10^{-3}}{0.75}(20.6)^2=9.34 N

8 0
3 years ago
Calculate the angle θ between the radius-vector of the point and the positive x axis (measured counterclockwise from the positiv
Y_Kistochka [10]

The point obviously is in the 3rs quadrant

So

စ= tan^-1( y/x)-180

စ= -89.7°

6 0
3 years ago
Other questions:
  • What is transmitted by all waves? a. energy b.mass c.matter b.sound
    12·2 answers
  • There are 3.78 liters in one gallon, therefore 3.78L = 1 Gallon. If I need 58 half-gallon containers for my boat, determine the
    5·1 answer
  • A power lifter performs a dead lift, raising a barbell with a mass of 305 kg to a height of 0.42 m above the ground, giving the
    10·1 answer
  • A horizontal black line at left labeled A has a blue arrow pointing down to it and another blue arrow pointing down from it. A h
    13·2 answers
  • Penelope sees that her brother Angelos is using water carelessly. She warns Angelos to be more careful because water is a renewa
    12·2 answers
  • Which statements are explained by Newton’s law of universal gravitation?
    11·2 answers
  • What is the equivalent resistance of a circuit that contains two 50.0 resistors connected in parallel with a 12.0 V battery?
    7·2 answers
  • There is given an ideal capacitor with two plates at a distance of 3 mm. The capacitor is connected to a voltage source with 12
    11·1 answer
  • Pls help me this is being timed.
    8·1 answer
  • A 1,103 kg car traveling at 18 m/s to the south collides with a 4,919 kg truck that is initially at rest at a stoplight. The car
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!