Answer:
Jupiter
Explanation:
Since the mass of Jupiter is the greatest from the given choices, it will exert the most force on any object orbiting 100km above its surface.
This is compliance with the Newton's law of universal gravitation which states that "the force of attraction between two bodies is directly proportional to the magnitude of their masses and inversely proportional to the distances between them".
- Therefore, the more the masses of two bodies, the higher the gravitational attraction
- Since the distance is the same, the planet with the greater mass will exert the most force on the satellite.
Answer: 30
Explanation: it is 30 meters per seconds
Answer:
The electron tends to go to the region of 4. higher electric potential.
Explanation:
When a charged particle is immersed in an electric field, it experiences a force given by

where
q is the charge of the particle
E is the electric field
The direction of the force depends on the sign of the charge. In particular:
- The force and the electric field have the same direction if the charge is positive
- The force and the electric field have opposite directions if the charge is negative
Therefore, an electron (negative charge) moves in the direction opposite to the electric field lines.
However, electric field lines go from points at higher potential to points at lower potential: so, electrons move from regions at lower potential to regions of higher potential.
Therefore, the correct answer is
The electron tends to go to the region of 4. higher electric potential.
Answer:
m/s
Explanation:
Assumptions: 0° is true North, and 90° is east (along the x-axis).
To solve this problem we must use the expression:

Where
is the velocity in the y-direction (East),
is the total velocity in the direction which the aircraft is travelling, and
is the direction the aircraft is travelling (angle from the y-axis).
Using the equation above, we obtain the y-component of velocity
m/s which is rounded to 227 m/s (due to the number of significant figures in the question).
To find average speed, we divide the distance of travel (in this case, 400 metres) by the time she took, 32 seconds. Therefore: 12.5 seconds is her average speed.