To start with solving this
problem, let us assume a launch angle of 45 degrees since that gives out the
maximum range for given initial speed. Also assuming that it was launched at
ground level since no initial height was given. Using g = 9.8 m/s^2, the
initial velocity is calculated using the formula:
(v sinθ)^2 = (v0 sinθ)^2
– 2 g d
where v is final
velocity = 0 at the peak, v0 is the initial velocity, d is distance = 11 m
Rearranging to find for
v0: <span>
v0 = sqrt (d * g/ sin(2 θ)) </span>
<span>v0 = 10.383 m/s</span>
It’s acceleration is 0 if it was traveling at a constant speed
The only force being acted upon it is gravity. A ball that was thrown downward off a building isn't in freefall, because it had initial velocity. A piece of paper can't necessarily be in free fall because it is affected by air resistance.
Answer:
Explanation:
Given
W amount of work is done on the system such that it acquires v velocity after operation(initial velocity)
According to work energy theorem work done by all the forces is equal to change in kinetic energy of object

where m=mass of object
v=velocity of object
When the object is already have velocity v then the final speed is given by work energy theorem

From 1 and 2 we get


