<span>d
The mass is doubled which means that both the momentum and kinetic energy are also doubled. Also the normal force that's acting along with the coefficient of kinetic friction is also doubled. So the friction that's working to slow down the crate is doubled. So the crate will have double the kinetic energy that needs to be dissipated, but the rate of dissipation is also doubled, so the total time required to dissipate the kinetic energy is the same. And since both crates start out with the same velocity and since they'll lose energy (and velocity) at the same proportional rate, they'll take the same distance to slide to a stop.</span>
It can't be less than 250 N or the cart wouldn't move at all. That means there is only 1 answer. It's between not enough info or 250 N. The answer is 250 N. If it was any more, there would be acceleration.
Answer:

Explanation:
We know that the frequency of the nth harmonic is given by
, where
is the fundamental harmonic. Since we have the values of two consecutive frequencies, we can do:

Which for our values means (we do not need the value of <em>n</em>, that is, which harmonics are the frequencies given):

Now we turn to the formula for the vibration frequency of a string (for the fundamental harmonic):

So the tension is:

Which for our values is:
